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We propose a training algorithm for one-class classifiers in order to minimize the classification error. The
aim is to choose the optimal value of the slack parameter, which controls the selectiveness of a classifier.
The one-class classifier based on the coordinated clusters representation of images is trained and then
used for the classification of texture images. As the slack parameter C varies through a range of values,
for each C, the misclassification rate is computed using only the training samples. The value of C that
yields the minimum misclassification rate, estimated over the training set, is taken as the optimal value,
Copt. Finally, the optimized classifier is tested on the extended database of images. Experimental results
demonstrate the validity of the proposed method. In our experiments, classification efficiency approaches,
or is equal to, 100%, after the optimal training of the classifier. © 2008 Optical Society of America

OCIS codes: 100.3008, 100.5010, 150.3040.

1. Introduction

We are dealing with a one-class classification prob-
lem, meaning that one class of objects is well defined,
while all other classes are either of no interest or
poorly described. In one-class classification a target
class is separated from all other objects considered as
outliers. Given a test object, we have to decide if the
object belongs to the target class or is an outlier. A
well-sampled training set of objects of the target class
is usually available, while poor (or no) information of
the outliers is known. High measurement cost and
low frequency of an event are some of the reasons for
the poor information about outliers. In multiclass
classification a decision boundary is supported from
both sides by samples of adjacent classes. In one-class
classification (also called outlier rejection) a set of
features of a target class is available, and thus only
one side of the closed decision boundary is supported.
This makes the problem of one-class classification
more difficult than multiclass classification.

An example of a one-class classifier problem is
given by polished granite (or ceramic) tiles that are

widely used as construction elements. In the industry
of granite tiles, a usual task is to choose tiles with
similar appearance, independent of the origin or of a
previous selection. Due to the natural origin of gran-
ite, the visual aspect of tiles may differ significantly,
even within a particular variety and denomination.
The polished granite tiles are usually inspected by a
human expert using a chosen master tile as the ref-
erence. The qualitative parameters used to evaluate
are mainly a dominant color, a texture granularity,
and a number of discriminant colors. As a result of
this classification, usually called “similarity judg-
ment,” the granite tiles of a similar visual aspect are
grouped in lots. Such inspection is subjective and
qualitative and is not based on formally defined cri-
teria. Application of artificial vision techniques and
digital image processing to the classification of orna-
mental rocks and ceramic tiles looks very promising.
Advances in research for methods and systems that
perform the visual inspection of granite and ceramic
tiles automatically, giving quantitative and repro-
ducible results in real time, are reported in [1–5].

A number of general approaches for solving the
one-class problem have been proposed [6–14]. Models
of one-class classifiers can be divided into two groups,
statistics- (density-based) and domain-based models.
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In the statistical approach, the target class is de-
scribed by a probability density function in a feature
space. A suitable threshold is selected to determine
the class (decision) boundary in the feature space. A
test object is assigned to the target class if the esti-
mated probability is higher than the given threshold.
A statistical approach involves a density estimation
of the target class. The estimation of conditional prob-
abilities is a nontrivial problem, especially when a
limited amount of data is available.

The domain-based approach determines a bound-
ary around the target class that minimizes the sur-
rounded volume; that is a constrained optimization.
The advantage of this approach is that no probability
density of a target class has to be estimated; the local
density variation is ignored. The decision boundary
follows the shape of the target class distribution and
does not focus on the high density regions. The
training set size is usually smaller for domain-based
methods than for density-based approaches. Since
classification using a domain-based approach is a
constrained optimization, the higher the dimension of
the feature space the harder the problem becomes.

In contrast to general approaches, application
oriented classifiers usually use a specified (not an
abstract) feature space. Recently developed, the coor-
dinated clusters representation (CCR) of images was
shown to be efficient in image classification [15–20].
Being a statistical method, the CCR does not esti-
mate the probability densities of texture images ex-
plicitly. To describe a class in the CCR feature space
we can use only a few training images of the target
class; in the limit case, it can be a single image. Be-
cause of high dimensionality, the CCR feature space
is difficult to use with the conventional statistics- and
domain-based methods of classification. These meth-
ods are used to determine a closed decision boundary
of simply connected domains in a feature space. Low-
and high-dimensional feature spaces are treated in
the same way (see, for example [12–14]), without pay-
ing attention to the ring-shaped probability distribu-
tion of feature vectors around the mass center of
class, in a high-dimensional feature space [8]. That is
the reason for an efficient one-class classifier in the
CCR feature space that was proposed in [16]. As
shown in the cited work, varying the classifier slack
parameter C allows either the recognition of a single
image or grouping of similar images in a class. In this
paper we propose an algorithm for the calculation of
the C value that minimizes the one-class classifica-
tion error and test this algorithm on a representative
image database that includes outliers.

To have a self-contained paper, we give a brief
description of one-class image classification in the
CCR feature space in Section 2, following [16]. Image
feature extraction is described in Subsection 2.A. The
criterion for one-class classification is given in Sub-
section 2.B. An algorithm of optimal training of the
classifier is discussed in Subsection 2.C. The classifi-
cation setup and experimental results are described
in Section 3, followed by conclusions in Section 4.

2. Quasi-Statistical Criterion of One-Class
Classification

A. Feature Extraction and Training

Suppose that Q images Sq �q � 1, 2, . . . , Q� are
known images of a class. In the training stage, a
random set of P subimages Sq

� �� � 1, 2, . . . , P� is
sampled from each image Sq. The image Sq can be
characterized by the three following magnitudes. The
CCR prototype distribution function of the qth set of
subimages Sq

� �� � 1, 2, . . . , P� is

Fq �
1
P �

��1

P

Fq
�, (1)

where Fq
� is the CCR distribution function of the

subimage Sq
�. Let d�Fq

�, Fq� be a distance of Fq
� from

Fq in the CCR feature space. Since Fq
� and Fq are

random variables, this distance is also a random vari-
able. Then, the estimated value of distance d�Fq

�, Fq�
and the variance,

�d�q �
1
P �

��1

P

d�Fq
�, Fq�, (2)

�q
2 �

1
P �

��1

P

�d�Fq
�, Fq� � �d�q�2, (3)

are also characteristic magnitudes of image Sq.
To characterize the whole class, identified with the

known images Sq, we calculate the five magnitudes,
F, D, �, D̃, and �̃ as follows. Since each of the texture
images Sq is interpreted as a random field of pixels,
and each of Q sets of subimages is randomly sampled
from this field, Fq, �d�q, and �q are random too. Hence,
we can calculate the corresponding estimates. The
class prototype distribution function is the mean,

F �
1
Q �

q�1

Q

Fq �
1

PQ �
q�1

Q

�
��1

P

Fq
�, (4)

that is, the mass center of subimages in the CCR
feature space. The mean of distances �d�q and the
mean of standard deviations �q are, respectively,

D �
1
Q �

q�1

Q

�d�q �
1

PQ �
q�1

Q

�
��1

P

d�Fq
�, Fq�, (5)

� �
1
Q �

q�1

Q

�q. (6)

D and � show the distribution of Fq
� with respect to

the mass center Fq of the qth set of subimages. In
addition, we calculate the mean distance D̃ of the qth
centers Fq from the center of the class, F, and the
variance �̃2:
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D̃ �
1
Q �

q�1

Q

d�Fq, F�, (7)

�̃2 �
1
Q �

q�1

Q

�d�Fq, F� � D̃�2. (8)

D̃ and �̃ characterize the distribution of mass centers
Fq with respect to the class prototype distribution
function F.

The above formulas describe the training phase of
the one-class classifier in the CCR feature space. Be-
fore proceeding with the recognition phase, we would
like to comment on the case when a single image S of
a class is known. This can have a practical interest for
similarity judgment of granite tiles. To begin train-
ing, Q independent random sets of subimages are
sampled from the master image S. Each qth set of
subimages is considered as the sampling of a virtual
image Sq �q � 1, 2, . . . , Q�. Then, the training follows
Eqs. (1)–(8).

B. One-Class Classification Criterion

The basic idea of the selection criterion is simple. To
assign a test image to, or exclude it from, the class of
source images, we have to compare the statistics of
subimages sampled from the test image. The follow-
ing five characteristics of the known images of a class
are used as references to compare the statistics: the
CCR prototype distribution function F, the mean dis-
tances D̃ and D, and the standard deviations �̃ and �.

Given a test image Stest, we sample a random set of
subimages S� and calculate the CCR distribution
functions F�, where � � 1, 2, . . . , K, and K is the
number of samples. Then the mass center of func-
tions F� and the mean distance of subimages from the
mass center are calculated as follows

Ftest �
1
K �

��1

K

F�, (9)

Dtest �
1
K �

��1

K

d�F�, Ftest�. (10)

It is important to realize that, if samples of a ran-
dom set are drawn from a high-dimensional space
(that is the case of CCR distribution functions), most
elements will fall down in an N-dimensional ring
centered on the mass center, and no samples will fall
in the central region, where the value of the density
function is the largest. This phenomenon is observed
in our computer experiments with texture images
and explained in [8]. Thus we can expect random sets
of subimages to be similar if they have almost iden-
tical distribution rings and the centers of rings are
close in the CCR feature space. Following this idea,
the test image Stest is assigned to the class of source
images S �Sq�q � 1, 2, . . . , Q�� if, and only if,

D̃ � 2�̃ � d�Ftest, F� � D̃ � C�̃, (11)

D � 2� � Dtest � D � 2�, (12)

where the adjustment parameter C is used to vary
the selectiveness of the classification criterion. The
one-class classification criterion consists of two con-
ditions. The first one is a constraint to the position of
the test prototype Ftest with respect to the learned
prototype distribution function F of the class, while
the second determines the mean distance of subim-
age distribution function F� from the test prototype
Ftest.

Fig. 1. (Color online) Source images from Rosa Porriño granite
and OUTEX catalogs numbered 1–18, in row order.
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For C � 1, the one-class classifier recognizes indi-
vidual images, mainly. No association of images into
classes takes place because the criterion is too selec-
tive. When C takes larger values, the decision crite-
rion becomes more inclusive, and the association in
classes takes place [16]. So, the “purity” of a class is
controlled with the parameter C. In Subsection 2.C
we solve the inverse problem, showing how to choose
the value of the adjustment parameter C to provide a
required (low error) selectiveness of the one-class
classifier. In other words, we choose the C that min-
imizes the error for one-class classification into the
class that has been defined by means of the training
set of images.

C. Minimum Error Classification

Since the selectiveness of the classifier is governed by
the adjustment parameter C of Eq. (11), it is impor-
tant to calibrate this parameter for each particular
application. In this subsection we describe an algo-
rithm for calibrating the parameter C that minimizes
the prediction error of the classifier. Generalized re-
sampling methods to estimate the prediction error of
classifiers are discussed, for example, in [6,21]. These
methods imply an estimate of empirical distributions
of the learning and test sets to calculate the condi-
tional risk function. To avoid this complication, we
use a semiempirical but efficient method for the error
estimation in the calibration of the adjustment pa-
rameter of the one-class classifier. Note that the cal-
ibration needs a training and a validation set of
images.

The prediction error of a one-class classifier is ex-
pressed as follows

Er��t, �o� � ��t � �1 � ���o, (13)

where � is a slack parameter; �t and �o are the target
rejection and the outlier acceptance rates [14]. In
one-class classification, only examples of a target
class are available, usually, that is, � � 1 in Eq. (13).
Therefore �t can be estimated reliably, but further

assumptions are needed to estimate �o. When both
sets of training images and of outliers are represen-
tative, one can take � � 0.5.

In the training of the classifier, one might use a
simple rule: minimize the total classification error on
the validation set. After the five magnitudes, F, D, �,
D̃, and �̃ have been calculated on a training set of
images of a target class, we can evaluate the perfor-
mance of the one-class classifier, Eqs. (11) and (12),
by varying the adjustment parameter C in a range of
values C � C1, C2, . . . , Ck. The validation set, used
for this purpose, includes images of both the target
class and of the outliers. In classifying an image, one
of the four possibilities takes place. The image is: (i)
correctly assigned to the class; (ii) rejected correctly;
(iii) assigned incorrectly; (iv) rejected incorrectly. Let
Nac, Nrc, Nai, and Nri be the numbers of images (i)
correctly assigned to the class; (ii) rejected correctly;
(iii) assigned incorrectly; (iv) rejected incorrectly. The
rates of misclassification and correct assignment are
defined as

M � �Nai � Nri

N �� �o � �t, (14)

A � �Nac � Nrc

N �, (15)

where N is the number of images used in the perfor-
mance evaluation of the one-class classifier for a par-
ticular C. The equality A � M � 1 is satisfied.
Searching for the optimal value of C that minimizes
the rate of misclassification M, we run the ex-
periment through the range of values C � C1,
C2, . . . , Ck to obtain the error function M � f�C�. The
misclassification increases gradually with C, because
the criterion becomes “all” inclusive (the number Nai
increases). When C gets smaller, the misclassification
increases also, because the criterion becomes very
exclusive (the number Nri increases). So the function
M � f�C� is expected to have a minimum, and the
value of C that gives the absolute minimum to M is
taken to be the optimal value of the one-class classi-
fier for images of a given class. When the error func-
tion minimum is not unique, there is an interval of
possible values of C � �Cmin, Cmax� that provide the
function’s minimum. Then, we choose the middle
point, Copt � �Cmax � Cmin��2 as the optimal value.

Finally, the algorithm to compute an optimal value
of the slack parameter C (or parameters, when a
classifier is multiparametric) can be summarized in
the following list of instructions:

Table 1. Outliers’ Classes Used to Calibrate the Classifier

Target
Class

Similar Classes
of Outliers

Random Classes
of Outliers

C1 C5 C8 C11 C15
C2 C5 C7 C7 C8
C3 C4 C6 C10 C17
C5 C2 C6 C3 C17
C9 C11 C13 C1 C10
C18 C14 C16 C10 C7

Table 2. Optimal Values for the Adjustment Parameter C Corresponding to Each of the Six Classesa

Target Class C1 C2 C3 C5 C9 C18

Optimal value, Copt 1.4 (1.4) 1.2 (1.2) 1.4 (1.5) 1.3 (1.2) 1.6 (1.7) 2 (2.1)
Classification efficiency (%) 99.62 (98.51) 99.25 (98.88) 99.62 (99.25) 99.25 (98.88) 100 (100) 100 (100)

aCalibration results using random classes of outliers are given in parentheses.
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1. Train a classifier over a training set of images of
a target class.

2. Choose a range and a step of variation for the
slack parameter C.

3. Calculate the error function M � f�C� for dif-
ferent values of C, using a validation set of images;
this set includes images of the target class and out-
liers’ images.

4. Determine a global minimum for the error func-
tion, M � f�C�, and take this C as the one-class clas-
sifier optimal value for classifying images into the
given target class.

3. Experimental Results

A. Classification Setup

The experiment to evaluate the algorithm of optimal
training of the one-class classifier was implemented
as follows. To obtain 18 classes of training and test
images we used 18 source images of 512 	 512 pixels,
shown in Fig. 1. Images 1 through 8 are of Rosa
Porriño granite tiles, while images 9 through 18 were
taken from the OUTEX database [22]. Note that images
2 and 7 are very similar [19]; human experts consider
tiles 2 and 7 to be of the same class, taking into
account the visual texture and color. Primary color
images were converted into gray level images, since
the one-class criterion ignores color features. Then,
the source images were reduced to the size of 205
	 205 pixels, as required by the optimal scale crite-
rion [18]. Each of the 18 classes was obtained by
extracting Q � 30 random images Sq �q � 1,
2, . . . , Q� of smaller size, 150 	 150 pixels, from a
reduced source image. Fifteen of the 30 images of
each class were used in the training of the classifier.
The validation set for each given class consisted of 15
training images of the same class and 30 images of
two other classes, the outliers. This set was used to
calculate the error function M � f�C�. Both in the
training and the test stage, a set of P � K � 30
random subimages Sq

� �� � 1, 2, . . . , P� of the size
50 	 50 pixels was sampled from each image Sq. The
fuzzy C-means method with the iterative optimiza-
tion algorithm was used for the binarization of gray
level images. The CCR histograms were calculated
with the 3 	 3 scanning window in all experiments.
The Manhattan distance between points in the CCR
feature space was used as the measure of distinction
between images.

To train the one-class classifier, we calculated the
five parameters of a class: the prototype distribution
function F, the mean distances D̃ and D, and the
standard deviations �̃ and � as described in Subsec-
tion 2.A. Then, the error function M � f�C� was cal-
culated for each of the 18 classes, varying C with the
step 0.2 in the interval C � 	0.2, 10
. In addition to 15
images of the class, 30 images of two different classes
were used as outliers. So, N � 45 in Eq. (14). The
classes of outliers were selected in two different ways:
similar and randomly selected classes. The absolute
minimum of the error function M � f�C� is the opti-

Fig. 2. (Color online) Plots of the error function M � f�C� for
target classes C1, C2, C3, C5, C9, and C18 using classes of outliers
similar to the target class or outliers of random classes.
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mal value of C for the classifier of images of the given
class. When the minimum of the error function is not
unique, we take the middle point Copt � �Cmax
� Cmin��2 of the minima interval �Cmin, Cmax� as the
optimal value of the adjustment parameter. Finally,
the classifier’s performance with the optimal Copt is
evaluated by classifying each of the 15 	 18 � 270
images of 150 	 150 pixels; 15 images being of the
target class and others being outliers.

B. Test Results

The outliers used in the calibrating of the one-class
classifier can be selected from the available database
in two different ways: either outliers are qualitatively
similar to the target class images, or they are selected
randomly from a database. To see the effect of the
outliers selection, we calibrate the classifier for six
target classes of images (C1, C2, C3, C5, C9, and C18)
in two ways. We then evaluated the classifier effi-
ciency using a 270 images database for 18 classes; 15
images per class. Table 1 shows the target classes
along with the outliers selected in both ways. Note
that the similarity between classes was estimated
qualitatively; we did not use a specific measure of
similarity [19]. Results of the classifier calibration for
each of the six classes are given in Table 2, along with
the classifier efficiency over the 270 images database.

Table 2 shows that the selection of outliers has a
small influence on Copt and, hence, on the optimized
one-class classifier performance. Nevertheless, the
classification efficiency is a little higher when outliers
are similar to the target class images, because the
uncertainty in the determination of the error func-
tion’s minimum M � f�C� diminishes, as can be seen
from the function’s plots (see Fig. 2).

The final classification test was done for each of the
18 classes, using 270 test images in total. Outliers
similar to a target class were used in the calibration
stage of the one-class classifier. Optimal values of the
adjustment parameter, Copt, and the performance of
the classifier are shown in Table 3. Classification
efficiency with the optimized one-class classifier is
shown to be higher than 99%.

4. Conclusions

In this paper we have proposed and studied an algo-
rithm for the optimal training of the one-class clas-
sifier, using the coordinated clusters representation
of images. In contrast to the approaches based on the
constrained optimization, we used a direct calibra-
tion of the classifier, varying its adjustment param-

eter C. For the calibration we used images of the
target class and a small number of outliers. The error
function’s minimum indicates the optimal value for
the parameter C. In our experiments, the classifica-
tion efficiency approaches, or is equal to, 100% when
an optimal value of the parameter C is used for the
classifier. Overlapping images are used in the train-
ing and recognition phases of the classifier (see also
[18,19]). Note that the training of a classifier and a
definition of a class are related items. Certainly, this
influences the classification rate. In our opinion, a
definition of a class using overlapping images is more
adequate for texture images than that done with non-
overlapping, adjacent images. As a consequence, a
higher classification rate is expected, using overlap-
ping images. Unfortunately, the training of classifiers
over a database of overlapping images is subesti-
mated and not often used in classification experi-
ments.

In practice the variation of C in the calibration
process can be limited to the interval C � �0.5, 3�,
which contains the minimum of the misclassification
function. In addition, in our experiments we see that
any value of the adjustment parameter selected in
the interval C � �1, 2� a priori, gives an error for the
one-class classification of 
5%. When a better perfor-
mance is required of the one-class classifier, it has to
be calibrated using the algorithm described above.
The algorithm does not need a special selection of
outliers in the classifier’s training stage, even though
better efficiency is achieved when outliers are similar
to the target class images.
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