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Abstract

The Coordinated Clusters Representation (CCR) is a texture descriptor based on the probability of occurrence of elementary binary
patterns (texels) defined over a square window. The CCR was originally proposed for binary textures, and it was later extended
to grayscale texture images through global image thresholding. The required global binarization is a critical point of the method,
since this preprocessing stage can wipe out textural information. Another important drawback of the original CCR model is its
sensitivity against rotation.

In this paper we present a rotation invariant CCR-based model for colour textures which yields a twofold improvement over the
grayscale CCR: first, the use of rotation-invariant texels makes the model insensitive against rotation; secondly, the new texture
model benefits from colour information and does not need global thresholding. The basic idea of the method is to describe the
textural and colour content of an image by splitting the original colour image into a stack of binary images, each one representing
a colour of a predefined palette. The binary layers are characterized by the probability of occurrence of rotation invariant texels,
and the overall feature vector is obtained by concatenating the histograms computed for each layer. In order to quantitatively
assess our approach, we performed experiments over two datasets of colour texture images using five different colour spaces. The
obtained results show robust invariance against rotation and a marked increase in classification accuracy with respect to grayscale
versions of CCR and LBP.
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1. Introduction

Texture analysis is a topic of intensive research activ-
ity with applications in many areas, such as medical imag-
ing, remote sensing, surface inspection, image retrieval and
others. Texture classification is a branch of texture analy-
sis which results particularly well suited for the automatic
grading of products such as ceramic tiles, marble and gran-
ite tiles, parquet slabs, etc. Based on this fact, an increas-
ing attention from industry has recently emerged. Since
in practical applications it is uncommon that texture im-
ages are captured under invariant viewing conditions, it is
of great importance that texture classification be rotation,
translation and scale invariant. Another issue in texture
classification is about the role of colour. Even if many ap-

proaches to texture analysis have been proposed in the last
three decades, in most cases such methods are applied to
grayscale images. A comprehensive review of these tech-
niques can be found in (Petrou and Garćıa-Sevilla, 2006).
During the last years there has been a growing interest in
extending traditional grayscale texture analysis to colour
images. The approaches to deal with colour texture can be
classified into three groups: parallel, sequential and integra-

tive (Palm, 2004).
Parallel approaches consider texture and colour as sepa-

rate phenomena. Colour analysis usually relies on the dis-
tribution of colours in an image, regardless of the spatial re-
lationship between pixel intensity; texture analysis is based
on the relative variation of the intensity of neighbouring
pixels, regardless of their colour. The approach proposed by
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Drimbarean and Whelan (Drimbarean and Whelan, 2001)
belongs to this group. In this work the authors first con-
vert the original RGB images into HSI, CIE XYZ, YIQ and
CIELAB, and then extract texture features from the inten-
sity channel (through Discrete Cosine Transform, Gabor
filters and co-occurrence matrices) and pure chrominance
features from the colour channels. In a similar way Hire-
math et al. (Hiremath et al., 2006) work with the HSV and
YCbCr colour spaces and extract wavelet features from the
intensity channel and first order statistical features from
the chrominance channels.

In sequential approaches the first step consists in apply-
ing a colour indexing method to the original colour images.
As a result we obtain indexed images that can be processed
as grayscale textures. In this framework the co-occurrence
matrix has received a great deal of attention, due to its
straightforward extension to indexed images (Arvis et al.,
2004; Van den Broek and Rikxoort, 2004; Huang et al.,
1997; Sertel et al., 2007; Singh et al., 2002). Sometimes this
method is referred to as the colour correlogram (Hauta-
Kasari et al., 1996), since it represents the probability of
occurrence of the same colour in pairs of pixels at a given
distance. Other texture descriptors have been used as well.
In (Bianconi et al., 2007) the authors use three different
colour indexing methods and three different texture fea-
tures, resulting in nine independent classifiers which are
combined together through diverse fusion schemes.

Integrative models are based on the spatial relationship
of pixels. These approaches can be further subdivided into
single-band if data are considered separately from each
channel, or multiple-band if two or more channels are con-
sidered jointly. In the first group we can include the colour
constant colour indexing of (Funt and Finlayson, 1995),
the generalized co-occurrence matrix (Arvis et al., 2004)
and a number of methods where classical grayscale texture
descriptors are applied to each colour channel separately
(Chindaro et al., 2005; Hiremath et al., 2006; Lepistö et al.,
2005; Manthalkar et al., 2002; Paschos, 2001). Multiple-
band approaches have also been obtained as extensions
of classical grayscale texture descriptors, such as wavelets
(Van de Wouver et al., 2003a), Gabor filters (Jain and
Healey, 1998), co-occurrence matrices (Palm, 2004), Lo-
cal Binary Patterns (Pietikäinen et al., 2002) and Markov
Random Fields (Panjwani and Healey, 1995).

The aim of this work is to present a rotationally invari-
ant descriptor for colour textures. Our approach is based
on the Coordinated Clusters Representation (CCR) as tex-
ture descriptor. Herein we present a twofold improvement
of this texture model: on the one hand, we obtain a rotation-
invariant operator by clustering the 512 possible binary pat-
terns of the original CCR into groups of rotationally equiv-
alent patterns; on the other hand, we extend the model to
colour texture by colour quantization, through which in-
dexed images can be obtained from the original colour im-
ages. The basic idea of the method is that an indexed im-
age can be viewed as a stack of binary images (layers). This
makes it possible to apply the CCR operator to each layer.

For this reason we refer to this approach as the multilayer

CCR.
The remainder of the paper is organized as follows. In

section 2 we give a detailed description of the method; in
section 3 we discuss about colour spaces and their possible
effects on classification; the experimental activity is pre-
sented in section 4 followed by results (section 5) and con-
clusions (section 6).

2. Description of the method

The method presented here relies on two buliding blocks:
a rotation invariant-version of the CCR and a multilayer
version for colour textures. Before describing in detail these
two ideas (secs. 2.1 and 2.2) and how they are combined
to give rotation-invariant multilayer features (sec. 2.3), we
briefly recall the Coordinated Clusters Representation.

The CCR was originally intended for binary textures
(Kurmyshev and Cervantes, 1996). In this model the fea-
ture vector is the histogram of occurrence of the possible
binary patterns (texels) that can be defined in a square win-
dow. The dimension of these elementary patterns is usu-
ally set to 3x3 pixels, since this size provides good discrim-
inative power at a reasonable cost in terms of both com-
puting speed and memory consumption. In this case, the
feature vector -denoted by CCR3×3- has 29 components.
The procedure to assign a CCR3×3 code to a texel is out-
lined in fig. 1. Note that the arrangement of the weighting
mask is arbitrary. A different arrangement of the weight-
ing factors would only result in a different coding of the
patterns. This model was later extended to grayscale tex-
ture images through global image thresholding. The bi-
narization threshold must be selected judiciously in order
to preserve textural information. Two methods have been
proposed so far: fuzzy C-means clustering (Sánchez-Yáñez
et al., 2003a) and isoentropic partition (Bianconi et al.,
2007). Both methods are based on the gray-level histogram
of the original image. Further extensions to colour images
were based on computing chromatic and textural features
separately and on combining them together through some
fusion scheme (Kurmyshev and Sánchez-Yañez, 2005). The
CCR is not invariant against rotation, and no rotation-
invariant version has been published so far.
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Fig. 1. Basic version of the CCR (CCR3×3). From left to right: orig-
inal grayscale window, binary pattern after thresholding, weighting
mask and CCR3×3 code.
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2.1. Rotationally invariant CCR operators

Rotation-invariant CCR features can be obtained follow-
ing an approach similar to the one proposed for the LBP3×3

operator (Ojala et al., 2002a), a related model in which
the value of the central pixel of the 3x3 window is used
for thresholding, resulting in 28 possible patterns. The first
step consists in replacing the squared neighbourhood of the
CCR3×3 by a circular one (Fig. 2). The gray-level values
of the pixels that are not placed exactly on pixels positions
are estimated through bilinear interpolation. We refer to
this arrangement as the CCR8,1.

28

25

22

27

24

21

26

23

20
CCR

8,1
 = 17

118

75

150

10576

97

58

84

99
14

Fig. 2. Circularly symmetric version of the CCR (CCR8,1). From left
to right: original grayscale window, binary texel after thresholding,
weighting mask and CCR8,1 code.

The rotation invariant CCR operator, denoted by
CCRri

8,1, is obtained by clustering all the patterns that
are rotated version of the same pattern. This operation
reduces the number of possible texels, and thus the di-
mension of the feature space from 512 to 72. Fig. 3 shows
an example of this: the pattern coded 494 is represented
together with its rotationally equivalent versions (namely
texels 17, 24, 80, 144, 272, 48, 20 and 18). Rotationally
equivalent patterns are assigned the same index.

17

272

24

48

80

20

145

18

Fig. 3. Sample of rotationally equivalent patterns.

A further reduction in the dimension of the feature space
can be obtained by taking into account the so called uni-

form patterns (Ojala et al., 2002a), that are patterns where
the number of transitions in the eight peripheral pixels is at
most two, regardless of the value of the central pixel. This
gives 18 possible uniform texels, as shown in fig. 4. Follow-
ing the implementation proposed in (Ojala et al., 2002a),
the 19th bin of the histogram accounts for all the remain-
ing non-uniform patterns. We refer to this feature space as
the CCRriu2

8,1 .

2.2. Multilayer CCR

The basic idea behind the multilayer CCR is that, given
a set of representative colours (palette), a colour pattern
(such as, for instance, a 3x3 window) can be represented

Fig. 4. The 18 possible uniform patterns of the CCRriu2

8,1
feature

space.

through a stack of binary patterns, one for each represen-
tative colour. Colour texture description through a stack
of binary images obtained by colour indexing has been pre-
viously reported in (Song et al., 1996; Boukovalas et al.,
1998). In these works texture is modelled by extracting
morphological features from the binary layers. Herein we
also perform a colour indexing pre processing stage to build
a stack of binary images, but we characterize each binary
layer by the frequency of occurrence of rotation invariant
elementary texture patterns. In order to ensure meaning-
ful comparison among different colour texture images, the
set of representative colours have to be image-independent.
To this end we adopted uniform quantization of the colour
space: n samples are taken on each axis of the colour space,
resulting in a palette of N = n3 colours. Provided that the
original colour images are given in the RGB space, we con-
sidered a good practice to do uniform quantization in this
space. Figure 5 shows the resulting palettes with 8, 27 and
64 levels. We used the same palette for the RGB and sRGB
spaces (a description of the colour spaces used in this work
is given in sec. 3). When other colour spaces are used, the
palette is converted to the new colour space through the
transforms described in section 3.2. Once the palette has
been computed, each pixel of a 3x3 colour neighbourhood
is assigned the index of the nearest colour of the palette
(herein we used the euclidean distance to determine the
nearest colour). Afterwards the neighbourhood is split into
a set of N binary layers, each layer corresponding to one
of the N colours of the palette, with the convention that a
pixel in the layer l ∈ {1, 2, ..., N} takes value 1 if its colour
index is l, and 0 otherwise. This results in a set of binary
patterns (of the type of fig. 3), one for each layer. Now each
binary pattern can be characterized through a proper bi-
nary texture descriptor, such as the CCR. Sequential scan-
ning of the original image gives rise to N pattern distribu-
tions (histograms), one for each layer. The feature vector
is formed by concatenating the histogram of each layer.

2.3. Rotation-invariant multilayer features

The basic ideas presented in the two previus sections can
be combined together to obtain rotationally invariant fea-
tures for colour textures. The entire process can be summa-
rized as follows (see fig. 6): 1) establishment of an image-
independent colour palette; 2) replacement of each square
neighbourhood by a circular one; 3) colour indexing; 4) sub-
division in binary layers; 5) calculation of the CCR code of
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Fig. 5. Uniform quantization of the RGB and sRGB colour spaces with 8, 27 and 64 levels.
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Fig. 6. Procedure to compute the multilayer CCR. Each colour pixel of the circular neighbourhood is assigned an index of a predefined
palette composed of N colours (in this case N = 8). Cardinal points are used in the figure to indicate the position of the colours of each
pixel of the circular neighbourhood in the colour space (RGB in this case).

the resulting binary patterns in each layer; 6) calculation
of the CCR histogram of each layer; 7) concatenation of
the resulting CCR histograms. It is worth noting that be-
ing the elements of the binary patterns mutually exclusive
(if one pixel is 1 in one layer the pixels in the same position
in the other layers are 0 by definition), only (N − 1) out
of N binary patterns are independent, and thus (N − 1)
layers suffice to describe the colour texture 1 . Any of the
above described rotation-invariant CCR operators can be
applied to the first (N − 1) binary layer, giving (N − 1)
codes, one for each binary pattern. The feature vector H
of the colour texture is obtained by concatenating the his-
tograms of each layer: H = [h1 h2 · · · hN−1], where hl is
the CCR histogram of the l-th layer. We refer to the mul-
tilayer CCR as ML followed by the acronym of one of the
three operators described in section 2.1. The resulting fea-
ture spaces are summarized in table 1.

1 Without loss of generality in our implementation we discard the
N-th level.

Table 1
Characteristics of the feature spaces. N indicates the number of
colours of the palette.

Feature space Dimension Colour Rotation-invariance

CCR3×3 512 no no

CCRri
8,1

72 no yes

CCRriu2

8,1
19 no yes

LBP3×3 256 no no

LBP ri
8,1

36 no yes

LBP riu2

8,1
10 no yes

ML CCR3×3 (N − 1)×512 yes no

ML CCRri
8,1

(N − 1)×76 yes yes

ML CCRriu2

8,1 (N − 1)×19 yes yes
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3. Colour spaces

The effect of different colour spaces in colour texture
classification is still subject of controversial debate in the
computer vision community. A brief review of related re-
search shows that a general consensus on whether there is
an optimal colour space or not has not been achieved yet.
In fact, different authors have drawn contradictory conclu-
sions from their experiments. Paschos found that HSV per-
forms best, followed by CIELAB and RGB (Paschos, 2001).
Similarly Van den Broek and Van Rikxoort showed that
in their results the HSV space outperforms the RGB (Van
den Broek and Rikxoort, 2004). Nevertheless Drimbarean
and Whelan drew the conclusion that none of the colour
spaces considered in their comparative experiment (RGB,
HSV, YIQ, CIE XYZ and CIELAB) proved sufficiently su-
perior (Drimbarean and Whelan, 2001). The same conclu-
sion comes out from the work of Mäenpää and Pietikäinen,
where the RGB, HSV, I1I2I3 and CIELAB colour spaces
are considered (Mäenpää and Pietikäinen, 2004).

3.1. Device-dependent vs. device-independent colour spaces

Colour spaces can be device-dependent or device-

independent. A device-dependent colour space is a colour
space where the resultant colour depends on the equip-
ment and the set-up used to produce it. On the other hand
a device-independent colour space is a colour model that
does not depend on any specific device, but rather on the
human vision system.

We considered in this work two device-dependent spaces
(RGB and HSV) and three device-independent spaces
(sRGB, sHSV and Lab). Herein we recall the basic dif-
ferences between these spaces. Interested readers are ad-
dressed to specific books on colour science (Kang, 2006;
Wyszecki and Styles, 1982) for an in-depth explanation.

In most cases the output of digital colour devices is given
in the RGB space. In this space colours are defined within
a unit cube through the additive colour-mixing model. A
potential drawback of the RGB space in colour texture
classification is that it is not perceptually uniform, and
hence difference between colours in the RGB space does
not correlate with human perception of colour difference.
The HSV (Hue-Saturation-Value) is a modification of the
RGB space. The HSV space can be represented through a
hexcone where the vertical axis (V) indicates the darkness
of the colour, the orthogonal distance to this axis is the
saturation (S) and the angle around the vertical axis is the
hue (H). Potential advantages of the HSV colour space are
that it is more related to the human visual system than the
RGB and that it is approximately perceptually uniform.

The basic device-independent colour space is the CIE
XYZ. This system relies on three colour-matching func-
tions, also referred to as the standard observer, related
to the red, green and blue cones of the eye. A device-
independent colour space can be considered as any space

R’G’B’

RGB HSV

sRGB sHSVCIELAB

device-independent spaces

device-dependent spaces

Fig. 7. Colour spaces and colour conversion pipeline

which has a one-to-one mapping (expressed through ex-
plicit mathematical equations) onto the CIE XYZ colour
space (Vhrel and Trussell, 1998). The CIELAB can be com-
puted via simple formulas from the XYZ space, and it is
more perceptually uniform than XYZ. The three coordi-
nates of CIELAB represent the lightness of the colour (L∗),
its position between red/magenta and green (a∗), and its
position between yellow and blue (b∗). The sRGB colour
space is a colorimetric RGB specification based on the av-
erage performance of personal computer displays. It has
received increasing attention since it has been adopted as
the default colour space for the internet (Kang, 2006).

Changing from a device-dependent colour space to a
device-independent one, requires estimating the relation-
ship between the device-specific space and at least one
device-independent space. This process is usually referred
to as colour calibration, and diverse mathematical models
have been proposed for it (Vhrel and Trussell, 1998).

3.2. Transforms between the colour spaces

Throughout this paper we assume that the original im-
ages are given in the RGB format. The colour conversion
pipeline from the RGB space to the other spaces considered
here is summarized in figure 7. Each transform is explained
in detail here below.

R′G′B′ → RGB
In some cases, depending on the imaging device, RGB

values may have a nonlinear luminance-to-signal relation-
ship. This is usually known as gamma correction (or gamma

encoding). We refer to gamma-corrected values as R’G’B’.
If gamma correction is used, device-dependent linear RGB
values have to be obtained from R’G’B’ values through in-
verse gamma correction. For each channel the following lu-
minance (x) to signal (y) relationship is usually assumed
(Grana et al., 2004; Haeghen et al., 2000; Kang, 2006):

y = axγ + b (1)
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Converting the R’G’B’ values into RGB requires estimat-
ing the values of a, b and γ of each channel an inverting
equation 1. The procedure is described more in detail in
section 4.3.1.

RGB → HSV
A simple relation exists between RGB and HSV (Kang,

2006):

V = max(R, G, B) (2)

S =







0 : V = 0

1 − min(R, G, B)/V : V > 0
(3)

H =











































0 : S = 0

60(G − B)/SV : V = R

60[2 + (B − R)]/SV : V = G

60[4 + (R − G)]/SV : V = B

H + 360 : H < 0

(4)

RGB → sRGB
In this work we adopted a linear model for colour cali-

bration. This means that the transform can be expressed
through equation 5 where the unknown aij values can be
estimated through a calibration procedure, as detailed in
section 4.3.2:
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(5)

sRGB → sHSV
This transform is the same as RGB → HSV .

sRGB → CIELAB
This is a two-step procedure. First the sRGB values are

converted into XYZ, and then from XYZ to L∗a∗b∗. A lin-
ear relation exists between sRGB and XYZ values (under
illuminant D65) (Haeghen et al., 2000; Kang, 2006):
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In the above equation sRGB values are encoded within
a range of [0,1]. XYZ values are then transformed into
L∗a∗b∗:
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(7)

where:

f(t) =







t1/3 : 1 ≥ t ≥ 0.008856

7.787t + (16/116) : 0 ≤ t ≤ 0.008856 > 0
(8)

and Xn, Yn and Zn are the tristimulus values of the illumi-
nant (D65 in this case).

4. Experimental set-up

In order to assess the performance of the feature spaces
introduced in the foregoing sections, we carried out a set
of texture classification experiments. To test the effective-
ness of the multilayer CCR we compared its classification
accuracy with the grayscale versions of both the CCR and
the LBP. We used two texture datasets; in both of them
the colour textures are hardware-rotated by the following
angles: 0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦. The
textures which compose the datasets have been selected in
compliance with the following criteria: a) stationary tex-
tures; b) planar or almost planar texture surfaces. Both
criteria aim at avoiding possible source of bias in classi-
fication. According to the definition given in (Petrou and
Garćıa-Sevilla, 2006), a stationary texture image contains
a single type of texture and so its local statistical prop-
erties are the same everywhere in it. The use of station-
ary textures guarantees good texture sampling. Textures
of non-planar surfaces can significantly change, due to the
presence of shadows and highlights, as the surface rotates,
with unpredictable effects on the results. The use of planar
or almost planar texture samples reduces this problem.

4.1. Datasets

In the experimental activity we used two different
datasets. The first one, herein referred to as the dataset A
(fig. 8), is composed of 45 texture classes (one image for
each class) from the OuTex library (Ojala et al., 2002b).
The textures used here are a subset of the group inca

100dpi. The size of the original images is 746 x 538 pixels.
As the texture surface rotates, only the central part of
the image captures the same portion of the surface. For
this reason we only retain the central part of the original
images. If W and H are the width and height of the orig-
inal image, the area to be retained is a centered square
the dimension of which is min(W, H)/

√
2. This gives an

image size of 380 x 380 pixels. Each image is subdivided
into 16 non-overlapping sub-images, giving a database of
720 texture samples (16 for each class).
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Fig. 8. Dataset A: 45 texture classes (one image for each class) from OuTex. Canvas{005, 021}; Carpet{005}; Granite{001, 003, 004, 005,
006, 007, 008, 009, 010}; Paper{006}; Plastic{001, 002, 003, 004, 005, 009, 016, 017, 018, 019, 020, 021, 022, 023, 024, 025, 026, 027, 028,
029, 030, 031, 032, 033, 034, 035, 036, 038, 040, 041}; Wood{006, 008}

.

Fig. 9. Dataset B: 8 granite texture classes (four images for each class) from Mondial Marmi. From left to right: Acquamarina, Azul Platino,
Bianco Cristal, Giallo Napoletano, Giallo Ornamentale, Giallo Santa Cecilia, Rosa Beta, Rosa Porriño

.

The second dataset, herein referred to as the dataset B
(fig. 9), is composed of 8 granite texture classes (four im-
ages for each class). The image acquisition system is com-
posed of a commercial digital camera (Samsung S850) and a
Monster DOME Light 18.25 illuminator. We used the cam-
era in manual mode with f-stop = 7.4 and exposure time =
1/30 s. The size of the original images is 1024 x 768 pixels.
As in the dataset A, only the central part of each image is
retained, resulting in a dimension of 544 x 544 pixels after
cropping. Each image is subdivided into 4 non-overlapping
sub-images, giving a database of 128 texture samples (16
for each class).

4.2. Classification and error estimation procedure

Texture classification is based on the nearest neighbour
rule with the ‘Manhattan’ (L1) distance. Classification
error has been evaluated by split-half validation with
stratified sampling (Steyerberg et al., 2001): the texture
samples were divided randomly into two non-overlapping
groups (training set and validation set) of half the sam-
ples each. In order to assess robustness against rotation,
the training set is always composed of textures from the

0◦ group, while the validation set is composed of ro-
tated textures taken from the θ degrees group, with θ ∈
{0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦}. The percentage of
correct classification is the ratio between the number of
textures of the validation set correctly classified and the
total number of textures of the validation set. For each
angle the estimated percentage of correct classification is
averaged over 100 different random partitions of data into
training and validation set in order to make the estimation
stable.

4.3. Calibration of the input devices

As discussed in section 3, characterization of the input
device is needed both to compute the RGB values from
R’G’B’ (inverse gamma correction) and to move from
a device-dependent space to a device-independent one
(colour calibration). The calibration procedures described
here below are based on the data provided by the x-rite

ColorChecker R© (fig. 10). It consists of 24 colour patches,
each one representing common natural colours such as hu-
man skin, foliage, sky, additive and subtractive primaries
and a six step grayscale. The x-rite ColorChecker has been
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used in many applications (Grana et al., 2004; Haeghen
et al., 2000; Mart́ınez et al., 2007). Device independent
colour values (sRGB and CIELAB) of each patch are
provided together with the ColorChecker.

Fig. 10. The 24 colour patches of the x-rite ColorChecker R©.

4.3.1. Inverse gamma correction

As a first step we estimate the parameters a, b and γ of
each channel (equation 1). To estimate these parameters we
considered the normalized values of the device-independent
lightness (L̄ = L/100) of each patch and the corresponding
device-dependent normalized response (S̄c = Sc/255) of
each channel. For each channel c ∈ {1, 2, 3} we seek the
values that best fits equation 1, which means solving the
following minimization problem:

argmin

(ac, bc, γc)







Nγ
∑

i=1

[

S̄c − (acL̄i
γc + bc)

]2







(9)

where Nγ is the number of colour patches used in the
procedure. Here we used the six grayscale patches of the
ColorChecker, and thus Nγ = 6. Inverse gamma calibra-
tion is not needed in dataset A, since the OuTex imaging
device does not adopt gamma correction (Mäenpää and
Pietikäinen, 2004).

Conversely the images of the dataset B have been ac-
quired with a commercial camera, and we experimentally
verified that this camera does employ gamma correction.
With the above described procedure we obtained the cali-
bration data shown in table 2:

Table 2
Estimated value for gamma correction of dataset B

.

Channel a b γ

R 1.0476 -0.11099 0.93937

G 1.0859 -0.13424 0.89653

B 1.0074 -0.10428 0.97102

4.3.2. Colour calibration

Colour calibration consists in determining the aij values
which model the linear transform between RGB and sRGB
spaces (eqn. 5). We considered all the 24 colour patches of
the x-rite ColourChecker. Provided that we know, for each
patch, the corresponding RGB and sRGB values, this gives
24 × 3 = 72 equations. The problem is overconstrained,

so the unknowns can be estimated through a least-square
procedure:

A =
argmin

(A′)

{

Nc
∑

c=1

‖ sPc − A′Pc ‖2

}

(10)

where A is the matrix defined in equation 5, sPc =
[sRc sGc sBc]

T , Pc = [Rc Gc Bc]
T and Nc = 24.

In dataset A we do not have at our own disposal the imag-
ing system used to capture texture images. Nonetheless,
since the spectra of the ColourChecker patches are avail-
able (Pascale, 2006), and both the spectral sensitivity of the
camera and the spectrum of the illuminant are also avail-
able from the OuTex website 2 , it is possible to estimate
the device-dependent RGB values of the colour patches.
Solving equation 10 we obtained the following transform
for dataset A:
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=











1.9588 −0.7808 0.4873

0.2406 1.2387 0.2931

0.2908 −0.4375 1.9077
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In dataset B the patches of the ColorChecker were ac-
quired using the apparatus described in 4.1 under the same
settings used to capture the granite textures. The R’G’B’
output of the camera was inverse gamma-corrected to ob-
tain the RGB values. Here it follows the resulting transform
for dataset B :
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sB











=











0.9736 0.0369 −0.0576

−0.0456 1.0139 −0.0153

0.0462 0.0987 0.8041
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(12)

5. Results and discussion

Tables 3 and 4 gather the classification results obtained
with datasets A and B respectively. The tables are orga-
nized as follows: feature space indicates the features em-
ployed to model texture (see table 1); N denotes the num-
ber of colours of the palette; columns from 0◦ to 90◦ con-
tain the percentage of correct classification obtained when
the rotation angle of the textures of the test set varies
from 0◦ to 90◦; mean indicates the mean classification ac-
curacy over the nine rotation angles considered. For com-
parison purpose we report at the top of both tables the
results obtained with the grayscale CCR and LBP opera-
tors (CCR3×3 and LBP3×3) and their rotation-invariant-
versions (CCRri

8,1, CCRriu2
8,1 , LBP ri

8,1 and LBP riu2
8,1 ).

The results confirm that the methods presented here are
rotation-invariant, since there is little variation in the per-
centage of correct classification as the rotation angle of the
test textures changes from 0◦ to 90◦. The improvement in
robustness against rotation becomes noticeable if we com-
pare the results of the rotation-invariant multilayer CCR

2 http://www.outex.oulu.fi/index.php?page=image acquisition
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Table 3
Classification results with dataset A (generic textures from OuTex).

Feature space Colour space N Mean 0◦ 5◦ 10◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

CCR3×3

GRAY

256 52.63 62.08 61.41 61.58 61.55 55.48 46.34 42.75 41.84 40.67

CCRri
8,1 256 56.55 56.82 55.17 54.59 56.42 55.46 57.98 56.29 58,14 58.08

CCRriu2

8,1 256 57.07 57.04 55.75 54.83 56.95 56.11 58.79 57.21 58.29 58.65

LBP3×3

GRAY

256 61.99 78.79 78.69 78.67 76.70 66.84 52.38 44.16 41.12 40.58

LBP ri
8,1 256 70.88 70.76 70.53 69.34 70.63 72.41 71.30 71.79 71.98 69.19

LBP riu2

8,1 256 70.46 70.56 70.69 68.78 69.95 71.38 71.11 71.26 72.03 68.43

ML CCRri
8,1

RGB

8 25.46 26.44 26.21 24.26 23.17 25.45 26.11 25.31 27.44 24.78

ML CCRri
8,1 27 70.17 70.45 69.10 69.09 69.28 70.56 70.61 71.01 70.65 70.74

ML CCRri
8,1 64 84.83 86.34 86.04 84.29 83.33 85.53 84.00 85.77 85.46 82.71

ML CCRriu2

8,1 8 25.45 26.43 26.23 24.19 23.23 25.46 26.08 25.40 27.24 24.81

ML CCRriu2

8,1 27 70.22 70.51 69.14 68.94 69.21 70.86 70.75 71.21 70.61 70.79

ML CCRriu2

8,1 64 84.76 86.29 86.00 84.32 83.36 85.45 83.89 85.71 85.49 82.37

ML CCRri
8,1

HSV

8 43.28 47.94 47.20 45.70 44.03 43.62 41.34 41.15 40.71 37.80

ML CCRri
8,1 27 77.23 77.40 78.60 77.44 77.03 78.58 76.77 76.99 76.60 75.70

ML CCRri
8,1 64 88.06 89.28 88.73 89.27 88.29 89.81 88.06 87.88 86.67 84.60

ML CCRriu2

8,1 8 43.46 48.21 47.35 45.95 44.09 43.67 41.55 41.72 40.81 37.79

ML CCRriu2

8,1 27 77.43 77.57 78.78 77.55 77.28 79.10 76.95 77.18 76.57 75.90

ML CCRriu2

8,1 64 88.07 89.29 88.82 89.34 88.41 89.82 87.97 87.80 86.67 84.47

ML CCRri
8,1

sRGB

8 73.21 72.95 73.03 72.15 71.84 73.88 74.83 73.04 74.13 73.08

ML CCRri
8,1 27 89.59 90.70 90.11 89.73 89.80 90.18 89.61 89.62 88.91 87.62

ML CCRri
8,1 64 91.09 91.72 90.97 91.44 90.79 91.01 91.52 91.44 90.75 90.18

ML CCRriu2

8,1 8 73.32 73.05 72.94 72.21 71.78 74.20 75.03 73.26 74.25 73.19

ML CCRriu2

8,1 27 89.65 90.81 90.04 89.66 89.78 90.34 89.84 89.86 88.99 87.52

ML CCRriu2

8,1 64 91.03 91.77 90.87 91.25 90.75 90.97 91.51 91.48 90.67 90.03

ML CCRri
8,1

sHSV

8 70.92 71.67 71.19 70.01 69.36 71.79 71.00 71.13 71.49 70.63

ML CCRri
8,1 27 93.62 94.81 94.28 94.49 93.97 94.02 94.30 93.40 92.50 90.86

ML CCRri
8,1 64 94.98 95.77 95.50 95.53 95.40 95.61 95.62 94.94 93.68 92.82

ML CCRriu2

8,1 8 71.15 72.01 71.42 70.15 69.61 72.04 71.12 71.31 71.64 71.01

ML CCRriu2

8,1 27 93.67 94.88 94.36 94.48 94.04 94.03 94.21 93.58 92.57 90.88

ML CCRriu2

8,1 64 94.92 95.63 95.59 95.56 95.27 95.48 95.59 94.90 93.61 92.62

ML CCRri
8,1

CIELAB

8 69.50 67.44 68.89 68.32 69.44 70.16 70.91 71.46 70.16 68.75

ML CCRri
8,1 27 86.93 87.17 87.08 86.38 85.64 87.63 87.88 87.71 87.20 85.68

ML CCRri
8,1 64 91.27 92.12 91.22 91.22 91.20 91.80 91.46 91.88 90.63 89.90

ML CCRriu2

8,1 8 69.79 67.75 69.13 68.53 69.48 70.44 71.21 71.88 70.65 69.09

ML CCRriu2

8,1 27 87.18 87.35 87.19 86.47 85.98 88.02 88,15 87.99 87.55 85.88

ML CCRriu2

8,1 64 91.21 91.95 91.23 91.27 91.08 91.70 91.36 91.84 90.54 89.93

features with those obtained with the CCR3×3. Another
interesting outcome is that there is little difference between
the CCRri

8,1 and the CCRriu2
8,1 operators. These results are

in agreement with those obtained with the LBP (Ojala
et al., 2002a). This suggests that the increase in dimension-
ality associated to the multilayer approach can be compen-
sated by using the uniform patterns.

Regarding to the role of colour, it clearly emerges from
tables 3 and 4 that adding colour information markedly in-
creases classification accuracy in both datasets. The num-
ber of colours of the palette has an important effect on
classification. We found that, as the number of colours

increases, the percentage of correct classification also in-
creases, as one would expect. This effect is more evident in
dataset A. The classification accuracy is also influenced by
the space in which colour is represented. From both tables
it comes out that, on average, device-independent spaces
outperform device-dependent spaces. To explain this phe-
nomenon we can consider, as an example, a texture image
taken from the dataset A (fig. 11). Due to the specific ad-
justements of the acquisition system, the colour content of
the image tend to spread over a limited portion of the RGB
cube (fig. 11, left). This is a common characteristic of all the
images of dataset A. As a consequence, uniform quantiza-
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Table 4
Classification results with dataset B (granite textures).

Feature space Colour space N Mean 0◦ 5◦ 10◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

CCR3×3

GRAY

256 85,54 93,19 94,17 93,09 91,03 83,98 74,81 77,09 81,25 81,22

CCRri
8,1 256 88,88 87,63 86,20 86,95 86,03 87,83 88,81 91,91 92,00 92,52

CCRriu2

8,1 256 89,52 88,34 86,44 87,53 87,00 89,06 89,23 92,22 92,44 93,45

LBP3×3

GRAY

256 78,12 97,09 96,03 96,13 94,39 69,38 58,27 59,81 64,64 67,38

LBP ri
8,1 256 89,72 92,22 90,59 91,94 90,03 86,61 84,78 90,11 90,14 91,05

LBP riu2

8,1 256 88,90 92,34 88,67 89,06 88,92 84,72 86,22 90,72 90,02 89,42

ML CCRri
8,1

RGB

8 97.65 96.88 96.80 98.08 97.91 97.28 97.53 97.67 98.72 97.98

ML CCRri
8,1 27 98.88 98,17 98.41 98.97 99.13 98.84 99.22 99.11 99.23 98.88

ML CCRri
8,1 64 99.36 99.28 98.81 99.17 99.58 99.52 99.47 99.47 99.47 99.47

ML CCRriu2

8,1 8 97.69 96.97 96.89 98,19 98,13 97.27 97.58 97.58 98.56 98.08

ML CCRriu2

8,1 27 98.94 98.28 98.56 98.98 99.17 98.86 99.22 99.17 99.27 98.97

ML CCRriu2

8,1 64 99.35 99.20 98.81 99.17 99.59 99.52 99.47 99.48 99.45 99.45

ML CCRri
8,1

HSV

8 97.75 96.91 97.02 98.08 98.30 98.08 96.28 98.27 98.31 98.50

ML CCRri
8,1 27 98.29 97.63 97.92 98.92 98.33 97.92 97.50 98.78 98.48 99.11

ML CCRri
8,1 64 98.74 98,17 98.22 98.84 99.19 99.13 98.48 98.48 99.23 98.94

ML CCRriu2

8,1 8 97.76 96.94 97.00 98.08 98.30 98.09 96.25 98.34 98.31 98.53

ML CCRriu2

8,1 27 98.29 97.63 97.97 98.92 98.31 97.92 97.50 98.78 98.48 99.11

ML CCRriu2

8,1 64 98.78 98.27 98.31 98.84 99.19 99.14 98.48 98.63 99.23 98.94

ML CCRri
8,1

sRGB

8 98.08 97.33 97.41 98.67 98.63 97.92 97.95 97.80 98.84 98,16

ML CCRri
8,1 27 99.11 98.55 98.72 99.09 99.17 99.39 99.38 99.31 99.34 99.05

ML CCRri
8,1 64 99.16 98.69 98.72 99.03 99.30 99.41 99.25 99.38 99.36 99.36

ML CCRriu2

8,1 8 98,14 97.56 97.58 98.67 98.73 97.91 97.98 97.91 98.78 98,13

ML CCRriu2

8,1 27 99.16 98.63 98.66 99.19 99.28 99.41 99.38 99.36 99.36 99.17

ML CCRriu2

8,1 64 99.16 98.59 98.72 99.06 99.27 99.42 99.30 99.38 99.36 99.38

ML CCRri
8,1

sHSV

8 98,12 97.08 97.06 98.39 99.03 98.64 97.38 98.53 98.47 98.52

ML CCRri
8,1 27 99.38 99.05 99.53 99.75 99.80 99.03 98.78 99.19 99.69 99.56

ML CCRri
8,1 64 99.84 99.88 99.81 99.84 100.00 99.98 99.78 99.33 99.97 99.94

ML CCRriu2

8,1 8 98,17 97.11 97.14 98.64 99.09 98.63 97.39 98.53 98.47 98.55

ML CCRriu2

8,1 27 99.40 99.14 99.53 99.75 99.80 99.09 98.78 99.19 99.70 99.64

ML CCRriu2

8,1 64 99.85 99.88 99.81 99.84 100.00 99.98 99.86 99.33 99.97 99.95

ML CCRri
8,1

CIELAB

8 95.80 95.98 94.95 96.33 95.39 93.84 95.06 96.17 97.63 96.86

ML CCRri
8,1 27 99.80 99.75 99.77 99.84 99.86 99.91 99.67 99.95 99.97 99.50

ML CCRri
8,1 64 99.72 99.64 99.69 99.66 99.89 99.72 99.63 99.67 99.67 99.91

ML CCRriu2

8,1 8 95.65 95.48 94.72 96.33 94.91 93.91 95.19 96.06 97.66 96.56

ML CCRriu2

8,1 27 99.80 99.75 99.77 99.83 99.86 99.91 99.66 99.95 99.97 99.52

ML CCRriu2

8,1 64 99.70 99.61 99.67 99.66 99.89 99.70 99.59 99.67 99.64 99.91

tion of the colour space may be inadequate, since many dif-
ferent colours can be assigned the same index, while many
entries of the palette are not used at all. Conversely colour
calibration eliminates this bias, and colour spreads more
uniformly over the colour space (fig. 11, right). Therefore a
higher number of colours of the palette take part to colour
indexing, which results in better separation bewteen the
texture classes and improved classification accuracy.

It is widely accepted that texture descriptors that in-
corporate colour and texture into a single model are sen-
sitive to changes in illumination, since the colour stimulus
itself is intrinsically dependent on illumination. Although

there is an extensive literature on the problem of robustness
against illumination variation of colour attributes (colour
constancy) this topic is still an open issue in computer vi-
sion. The approach presented in this paper relies on the
assumption that illumination is kept constant, and both
textures datasets used in the experimental activity satisfy
this condition. In presence of varying illumination condi-
tions the colour calibration procedure described in section
4.3.2 can be used as a pre-processing stage to compensate
for variance in illumination and changes in spectral sensi-
tivity of the camera.
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Fig. 11. From left to right: texture canvas005 and its colour distri-
bution before colour calibration (RGB space) and after colour cali-
bration (sRGB space).

6. Conclusions

In this paper we presented an improved version of the
Coordinated Clusters Representation (CCR) for rotation-
invariant classification of colour textures. Rotation invari-
ance is achieved by using uniform circular patterns, fol-
lowing an approach similar to the one proposed for the
LBP. Colour and texture are combined into a single model
through colour indexing and the multilayer approach. The
experimental results make evident that classification is not
affected by relative rotation between training end test im-
ages. The results also show that considering colour and
texture jointly provides a marked improvement of the clas-
sification accuracy in comparison with the grayscale CCR
and LBP features. An important advantage of the method
presented here is that, differently from the original CCR,
it does not rely on previous binarization of the texture im-
age. Our results show that classification accuracy depends
on the colour space, and that device-independent colour
spaces perform better.
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Texture classification through combination of sequential
colour texture classifiers. Lecture Notes in Computer Sci-
ence 4756, 235–243.

Boukouvalas, C., De Natale, F., De Toni, G., Kittler, J.,
Marik, R., Mirmehdi, M., Petrou, M., Le Roy, P., Salgari,
R., and Vernazza, G. ,1998. ASSIST: Automatic system
for surface inspection and sorting of tiles. Journal of Ma-
terials Processing Technology, 82(1-3):179–188.

Chindaro, S., Sirlantzis, K., Deravi, F., 2005. Texture clas-
sification system using colour space fusion. Electronics
Letters 41, 589–590.

Drimbarean, A., Whelan, P., 2001. Experiments in colour
texture analysis. Pattern Recognition Letters 22, 1161–
1167.

Funt, B., Finlayson, G., 1995. Color constant color index-
ing. IEEE Transactions on Pattern Analysis and Machine
Intelligence 17, 522–528.

Grana, C., Pellacani, G., Seidenari, S., Cucchiara, R., 2004.
Color calibration for a dermatological video camera sys-
tem. In: Proceedings of the 17th International Confer-
ence on Pattern Recognition, Cambridge (UK), Vol. 3.
pp. 798–801.

Haeghen, Y., Naeyaert, J., Lemahieu, I., Philips, W., 2000.
An imaging system with calibrated color image acquisi-
tion for use in dermatology. IEEE Transactions on Med-
ical Imaging 19, 722–730.

Hauta-Kasari, M., Parkkinen, J., Jaaskelainen, T., Lenz,
R., 1996 Generalized cooccurrence matrix for multispec-
tral texture analysis. In: Proceedings of the 13th Inter-
national Conference on Pattern Recognition, Wien (Aus-
tria), Vol 2., pp. 785-789.

Hiremath, P., Shivashankar, S., Pujari, J., 2006. Wavelet
based features for color texture classification with appli-
cation to CBIR. International Journal of Computer Sci-
ence and Network Security 6, 124–133.

Huang, J., Kumar, S.R., Mitra, M., Zhu, W., Zabih, R.
1997. Image Indexing Using Color Correlograms. In: Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, San Juan (Puerto Rico), pp.
762-768.

Jain, A., Healey, G., 1998. A multiscale representation in-
cluding opponent color features for texture recognition.
IEEE Transactions on Image Processing 7, 124–128.

Kang, H., 2006. Computational Color Technology. Spie
Press.
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