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Abstract

Content-based image retrieval (CBIR) consists in searching for digital images in large databases by analyzing
the visual content of the image. In this paper we propose a categorization scheme for colour texture descrip-
tors used in CBIR, focusing on colour-based features, i.e. those models that only take into account the colour
of an image, disregarding the spatial distribution of the pixel values. A representative set of salient colour-
based methods has been deeply investigated, implemented and tested. Comparative results are presented
along with a discussion of the pros and cons of each technique.

Keywords: colour features, texture features, content-based image retrieval, visual appearance of industrial ma-

terials

1 Introduction

Computer vision can be defined' as “a branch of ar-
tificial intelligence and image processing concerned
with computer processing of images from the real
world”. The aim of this processing or analysis of im-
ages may be quite different, depending on the par-
ticular application considered (for a general reference
on the topic, the interested reader is referred to the
work of Branch and Olague [7]). The wide variety of
image analysis techniques proposed in literature can
be grouped into three main categories, namely: im-
age classification (IC), image segmentation (I1S) and
content-based image retrieval (CBIR).

Classification consists in grouping images into
classes of similar visual properties. It is widely
used for product grading (i.e. grouping items into
lots of similar visual appearance). Segmentation
means dividing a single image into meaningful ar-
eas. It finds widespread application in surface in-
spection (i.e. identification of stains, veins, cracks,
etc.). Content-Based Image Retrieval, which is the
topic we are concerned with in this paper, can be de-
fined as “any technology that in principle helps to or-
ganize digital picture archives by their visual content”

[8]. Most commonly CBIR is intended as the prob-
lem of searching for digital images in large databases
by analyzing the visual contents of the image, instead
of using meta-data such as annotations or keywords.
CBIR finds a major industrial application in automated
stock search engines. Such systems help in search-
ing the most similar items in stock with respect to a
query sample. This is very attractive for companies
which produce/sell product with high aesthetic con-
tent [18]: granite, marble, parquet and fabric are just
some examples.

It is commonly accepted that colour and texture are
two key elements which determine the human percep-
tion of colour images. For this reason the above men-
tioned tasks are based, to a great extent, on the study
of these elements. Texture analysis has been tradi-
tionally performed by extracting texture features from
the gray-level images, and thus discarding colour in-
formation (for a comprehensive review of texture anal-
ysis methods readers are referred to reference [24]).
Nevertheless, there is strong evidence that incorpo-
rating colour information into the texture model yields
improved performance [10, 2]. Previous experiments

1http://www.hyperdictionary.com/search.aspx?definezcomputer+vision



conducted by the authors are in agreement with this
assertion [4, 5]. Despite dozens of colour texture de-
scriptors have been recently presented, to the best of
our knowledge, a general framework to classify the
wide variety of colour texture models has not been
developed yet. In this paper we propose a catego-
rization scheme for colour texture descriptors, based
upon an extensive literature review. Our framework
groups colour texture descriptors into spatial, spectral
and hybrid models. Herein we focus on colour fea-

tures, a class of spectral models for RGB images. The
remaining of the paper is organized as follows: sec-
tion 2 presents a framework for classification of colour
features; sections 3 and 4 provide a thorough descrip-
tion of features based on colour statistics as well as
histogram-based features; sections 5 and 6 describe
the set-up and report the results of a comparative ex-
periment. Final considerations are presented in sec-
tion 7.

2 Proposed framework for colour texture descriptors

There is a substantial difference between colour and
texture stimuli. Texture refers to the variation of the in-
tensity in a neighbourhood of pixels, whereas colour
focuses on the spectral content of an image. Tra-
ditionally texture and colour have been regarded as
separate phenomena, but in the last years various
approaches have emerged to take into account both
elements jointly. Some attempts to establish a frame-
work for colour texture analysis have been recently
published [21, 27]. Unfortunately these works only
cover a limited number of aspects, and fail to provide
a general overview. We propose to classify the wide
variety of existing colour texture descriptors for IC, IS
and CBIR into three main categories: spatial, spectral
and hybrid.

Spatial methods are based on the relative variation of
pixel values in the spatial domain. Spectral methods
rely solely on the colour content of the image, irre-
spective of the spatial distribution and, consequently,
they are invariant to any spatial permutation of the pix-

3 Colour statistics

With the term colour statistics we refer to global sta-
tistical parameters (such as mean value, standard de-
viation, median, percentiles, etc.) computed directly
from the colour data.

Kukkonen et al. [13] used the mean values of the R,
G, and B colour channels to classify ceramic tiles. In
order to compensate for illumination variations the au-
thors also use the rgb space, where the original R,G
and B values are normalized by 1/(R+G+ B). These
features perform better, as one could reasonably ex-
pect.

A similar approach was presented by Lopez et al.
[16], who proposed a set of statistical features for sur-
face appearance such as the mean, the standard de-
viation and the average deviation.

els in the image. Hybrid methods share properties
of both spatial and spectral methods, although they
cannot be considered pure spatial nor pure spectral.
There is a wide variety of ways to combine spatial
and spectral features into an hybrid model, such as
feature concatenation, fusion of classifiers and joint
colour-spatial features.

In this work we focus on colour based features, a
class of spectral methods devised for three channel
images. Colour based features are advantageous in
that they are invariant to translation and rotation, and
only slightly dependent on the viewing angle. How-
ever, it is well-known that the ability of colour based
features to characterize colour images drops drasti-
cally in case of varying illumination. It is also well-
known that images with different spatial layout can
originate similar colour features. Colour based fea-
tures can be divided into two main groups, namely
colour statistics and colour histogram based features,
which are described in turn in the next two sections.

Based on the consideration that the hue compo-
nent (H) represents an angle in the the IHLS colour
space (an improved HLS colour space), Hanbury [11]
proposed the use of circular statistics. The cen-
tral idea is to consider colour content of each pixel
as a two-dimensional vector (cosH, sinH). Accord-
ingly, to calculate the hue average of an image one
has to determine the argument of the resultant vec-
tor of the sum of the unit vectors corresponding to
each pixel, instead of averaging directly the hue val-
ues. To take into account the relationship between
the chrominance coordinates, the foregoing unit vec-
tors can be weighted by the saturation S, resulting in
C = (ScosH, SsinH).

4 Colour histogram based features



The colour histogram is an estimation of the probabil-
ity of occurrence of colours in an image. Hence, fea-
tures computed from colour histogram can be used
to model colour texture. The colour histogram de-
pends both on the quantization of the colour space
and on the colour space itself. Quantization plays an

4.1 Joint 3D colour histograms

The procedure to compute 3D colour histograms con-
sists in establishing a set of representative colours
(palette) and counting how many times each colour
of the palette appears in the image. There are two
main approaches to generate the colour palette. On
the one hand, a data-independent palette can be gen-
erated by partitioning the entire colour space into re-
gions, independently of the colour content of each im-

4.1.1 Image-independent quantization

Histogram-based methods are based on the colour
histogram, a first-order statistics of the distribution of
colour inside an image which was originally proposed
by Swain and Ballard [29]. In this work the authors
used the rg-by-wb colour space, which resembles the
opponent colour space of the human visual system.
After the pioneering work of Swain and Ballard, var-
ious authors proposed variations and improvements
over the original colour histogram. Since one of the
principal drawbacks of the colour histogram is the
high dimensionality of the resulting feature space,
many approaches aimed at reducing such dimension-
ality and/or permitting efficient storage.

Boukovalas et al. proposed a solution where the
colour histogram is stored dynamically in the form
of a binary tree [6], in order to make the technique
more efficient in terms of memory requirements, with-
out any performance penalty. To reduce histogram
dimensionality Viet Trand and Lenz [30] proposed a
modified version of the Karhunen-Loéve transform
which takes into account the characteristics of the
CIELAB colour space. Paschos and Petrou [23] in-
troduced the histogram ratio features, second-order
statistics obtained by combining pairs of bins and

4.1.2 Image-dependent quantization

The main advantage of the techniques described
in the previous section is that, being image-
independent, they are also general-purpose. Con-
versely they are not optimized for a specific image
database. A different subdivision of the colour space
can be obtained considering the actual colour con-
tent of each image. Image-dependent colour quanti-
zation methods can be classified into: splitting algo-

important role: a coarse quantization (few bins) leads
to over-smoothed histograms, whereas a fine quanti-
zation (many bins) results in sparse histograms and
high-dimensional feature spaces. A compromise be-
tween these two extreme situations has to be found.

age. This results in the same predefined palette for
all the images to be processed. We refer to this ap-
proach as image-independent quantization. On the
other hand, image-dependent quantization considers
the colour content of each image. This can be done
through suitable colour quantization procedures, such
as clustering and related methods. In doing so, differ-
ent input images give rise to different colour palettes.

computing the corresponding colour ratios. The ra-
tionale behind this method is that it gives an estima-
tion of the relative importance of the basic colours of
an image. A significant drawback of this approach
is that the dimension of the feature vector is image-
dependent, which makes it difficult to use standard
classification methods.

The selection of an adequate colour space and an
appropriate quantization scheme are obviously cru-
cial points of each colour histogram method. In the
implementation of Swain and Ballard [29] a coarse
quantization (8 intervals) is used for the achromatic
(wb) axis and a finer quantization (16 intervals) for
the chromatic axes (rg) and (by). An extensive com-
parative experiments on the effects of colour space
and quantization was carried out by Lee et al. [14].
They tested uniform quantization over six different
colour spaces (RGB, CIEXYZ, CIELAB, CIEL*C*h,
opponent colour space and HSV), and found that
the CIELAB colour space in general works better,
and that a higher number of bins gives better perfor-
mance, even if it becomes saturated as the number
of bins approaches 512.

rithms and clustering-based algorithms. The splitting
algorithms recursively subdivide the colour space of
the original image into separate subspaces accord-
ing to predefined criteria; the clustering-based meth-
ods extract the colour palette through suitable cluster-
ing algorithms, such as the K-means. Even if image-
dependent colour quantization may provide better re-
trieval results, this approach is usually more time-



consuming than image-independent colour quantiza-
tion, since the colour palette has to be recalculated
every time a new image is added to the database.
The interested reader may refer to the work of Or-

4.2 Marginal colour histograms

Marginal colour histograms take into account the
probability distribution of colours as a function of one
or two channels, ignoring information about the other
channels. Marginal histograms can be considered
as projections of the joint 3D colour histogram onto
lower dimensional subspaces (2D or 1D). The “rai-
son d'étre” of such methods is the assumption that
colour coordinates are fairly uncorrelated. However
this assumption may be sufficiently accurate for un-
correlated colour spaces such as the Ohta’s (referred

4.2.1 Raw marginal histograms

Pietikéinen et al. [25] compared the performance of
the joint 3D colour histogram with three 1D marginal
histograms (one for each colour axis), in the classifi-
cation of printed colour paper. Their results indicate
that the marginal histograms perform almost as well
as the joint 3D colour histogram, and that the Ohta’s
colour space performs slightly better than the RGB.
Lepistd et al. [15] used marginal colour histograms
computed on the H and V channels of the HSV colour
space for classification of natural rock images. Differ-
ent number of bins for channel where tested: 4, 16
and 256. In our comparative experiment we used the
settings that gave the best results: histograms of the
H and V channels quantized with 256 levels.
Konstantinidis et al. [12] proposed the fuzzy his-
togram linking method to project the colour histogram
onto one single dimension. This technique focuses
on the differences between the regions that divide
the colour space in a perceptual sense. To this
end, on each component of the CIELAB space, differ-

4.2.2 Compressed 2D histograms

Compressed chromaticity histograms have been pro-
posed by Drew et al. [9]. In their approach the original
images are previously submitted to a colour angle nor-
malization procedure for illumination-invariance. Af-
terward the dimensionality is reduced by converting
the original RGB images to the rgb space, and re-
taining only the r and g components. The resulting
2D chromaticity histograms, which can be considered
as images, are compressed using a three-step pro-
cedure: a wavelet-based reduction step for low pass
filtering followed by discrete cosine transform (DCT)
and truncation of the DCT-transformed image. The

chard and Bouman [20] and Scheunders [28] for fur-
ther details about this class of methods.

to as 111213 in table 1), but not entirely acceptable for
the RGB space [25], due to the correlation existing be-
tween the R, G and B channels of common imaging
devices. Marginal colour histograms can be used as
colour features directly, as described in section 4.2.1,
or after some kind of processing, such as compres-
sion, as described in section 4.2.2. Approaches have
also been proposed where the colour features are
statistics (i.e. moments) extracted from the marginal
histograms, as discussed in section 4.2.3.

ent fuzzy sets are defined by using triangular-shaped
built-in membership functions and a set of fuzzy rules.
Through fuzzy inference each original colour triplet
is assigned a colour membership value from 0 to 1,
which is related to the common-sense idea of colour
(from O to 1: black, darkgrey, red, brown, yellow,
green, blue, cyan, magenta, white). The resulting
feature space is a 10-bin histogram representing the
probability distribution of the colour membership val-
ues.

Hanbury [11] introduced the saturation-weighted hue
histogram (SWHH) and the colour statistics histogram
(CSH). Both are marginal histograms computed over
IHLS colour space. The former is a histogram of the
hue value of each pixel weighted by the saturation
value of the same pixel; the latter is a concatenation of
the two histograms of the saturation-weighted mean
hue (|C|) and mean length (arg(C)) as a function
of luminance, where C denotes the vector defined in
section 3.

experimental results show that the method is accu-
rate and more resilient to noise than the joint 3D his-
togram.

In a similar way Berens et al. [3] proposed another
approach to compress the colour histograms in or-
der to reduce the computational cost in CBIR. In
their procedure the original RGB images are first con-
verted into the red-green/blue-yellow colour space,
which better decorrelates colour information and is
more perceptually uniform than the RGB. The result-
ing 2D chromaticity histograms are then compressed
through standard image coding techniques, such as



the discrete cosine transform, the Hadamard trans-
form, the Karhunen-Loéve transform and hybrid meth-

4.2.3 Statistics from marginal histograms

Theses features are usually referred to as soft colour
texture descriptors [26, 17]. The main advantage
of these methods is that the dimension of the fea-
ture vector is usually low. This reduces the compu-
tational burden and makes these techniques particu-
larly suited for real-time applications.

The chromaticity moments proposed by Paschos [22]
are moments computed from 2D chromaticity his-
tograms. The original RGB images are first converted
to the xyY colour space, and then they are repre-
sented through the chromaticity histograms, which
are the probability distribution of the (x,y) values.
From the 2D chromaticity histograms a set of mo-
ments (up to 10) is computed and used as feature
vector. In the original formulation the chromaticity
moments are not invariant to image dimension. This
makes the method inapplicable in CBIR. In order to
cope with this problem we introduced, in our experi-
mental comparison, a normalized version of the chro-
maticity moments.

A set of statistics, computed from the CIELUV colour
space, for the classification of burn images, has been
proposed by Acha et al. [1]. In this work a calibration
procedure is described to move from the RGB space
to the device-independent CIELUV. These statistics
are: the mean and the standard deviation of each
of lightness (L*), hue (atan(v*/u*)), and chroma

5 Comparative study

An experimental campaign was carried out to com-
pare a significant subset of the above described tech-
niques. The experiment consisted in a content-based
image retrieval task. As a first step we formed a
database of 300 colour textures images of industrial
materials (i.e. ceramic tiles, natural stone tiles, fabric,
wood, leather, etc.). From this database we selected
a subset of 6 query images representing fabric (2),
granite (2), ceramic (1) and wood (1). The CBIR task
consisted in retrieving, for each query image, the five
“most similar” images in the database. In order to de-
termine the “ground truth” of the experiment, we sub-
mitted the query images and the database to a group
of 32 human observers. Each observer was asked to
select the five most similar images in the database to
each of the six query images, and to rank them in de-
scending similarity order. The images were presented
to the observer through a web application, available at
http://dismac.dii.unipg.it/~CBIR. Fol-

ods. The experimental results show that compression
rates as high as 250 to 1 can be achieved without af-
fecting retrieval performance.

(v/(u*)? + (u*)?); the skewness and the kurtosis of
each of L*, u* and v*. With these features the au-
thors report an accuracy higher than 80% in the clas-
sification of burn images.

Lépez et al. [16] tested various combinations of sta-
tistical descriptors computed from the RGB and the
CIELAB spaces. In addition to the features discussed
in section 3 (mean, standard deviation and average
deviation) they also considered two blocks of marginal
histogram moments from the 27 to the 5" degree
and from the 6" to the 10" degree respectively. With
the best combination the authors claim a classifica-
tion accuracy higher than 98% with the CIELAB space
and 93% with the RGB space in surface grading of
decorated ceramic tiles.

In [26] Prats-Montalban et al. used a similar set of sta-
tistical descriptors, namely: mean, standard deviation
and moments from the 2"¢ to the 5! degree of each
colour channel for inter-class surface grading of ce-
ramic tiles. In this work three different colour spaces
are used (CIELAB, CIELUV and RGB) and two com-
pression/classification approaches Soft Independent
Modeling of Class Analogy (SIMCA) and Partial Least
Squares Discriminant Analysis (PLS-DA). An average
classification accuracy of over 94% is reported in the
inter-class classification of ceramic tiles.

lowing the same approach proposed in [14], ob-
servers were given no guidance about whether to
focus more on the spatial or chromatic differences be-
tween the images. The feedback from the observers
was processed as a voting system: each time an im-
age was selected by one user, we considered that im-
age as receiving one weighted vote, where the weight
is (1/7), being r the rank given by the observer to the
selected image. The ground truth was then obtained
by sorting the images by weighted vote in descend-
ing order and retaining the first five images for each
query image. The resulting ground truth is shown in
fig. 1(a), where the images in the first column repre-
sent the query images, and the other images the most
similar in order of descending weighted vote from left
to right. The performance of the different methods
was compared through a minimum distance classi-
fier. For each query image I,,¢ € {1,...,6} the
classifier sorts the images of the database in order



(a) Ground truth

(b) Images retrieved with the method chromaticity mo-
ments 3-3, xyY colour space (ref. [22])

(c) Images retrieved with the method mean value, RGB
colour space (ref. [13])

(d) Images retrieved with the method joint 3D colour
histogram, rg-by-wb colour space (ref. [29])

Figure 1: Ground truth and retrieved images.The first column of each mosaic contains the query images. The
other columns contain the retrieved images, in descending similarity order from left to right.

of ascending distance from the query image (herein
we used the L; norm, also known as the Manhattan
distance), and returns the first five images for each
query image. To estimate the effectiveness of each
method we used two parameters: 1) precision and
2) average rank of relevant images [19]. Precision is
given by:

Ne

P =
Ny

(1)

6 Results and discussion

The results obtained with the different methods are
summarized in table 1. The invariant version of the
chromaticity moments 3-3 gave the best results (high-
est precision and lowest average rank), followed by
various combinations of soft colour descriptors (mean
value + other statistics), and by the joint 3D colour
histogram. As one would expect, the original ver-
sion of the chromaticity moments ([22]) does not pro-
vide good results. Surprisingly the techniques belong-
ing to the marginal histograms group do not show
good performance. Another interesting result is that

where N. is the number of relevant images (i.e. re-
trieved images which are in the ground truth), and Ny,
is the number of images which form the ground truth
(herein Ny; = 30). Average rank of relevant images
is given by:

1 &
R Nc;r )

where r; is the rank of the i-th relevant image.

high-dimensional feature spaces do not perform bet-
ter than low-dimensional ones. It results, on average,
that the precision of all the methods considered in the
experiment is rather low. To explain this result it is
worth considering the ground truth and the images
retrieved by three of the methods which perform best
(fig. 1). These images put it evident how different are
the search criteria used by the humans and by the
colour-based algorithms. The ground truth suggests
that the search criteria used by the human observers
are somewhat semantic: the observer classifies the



Group Author Method Colour space Dim. P R
#  HANBURY-2003 [11] Mean resultant chrominance vector IHLS 2 9/30 19
B Mean value RGB 3 12030 24
§  KUKKONEN-2001[13]
17} Mean value rgb 3 11/30 16
3 Mean value + standard deviation RGE 6 12/30 28
© LOPEZ-2005 [16]
o Mean value + average deviation RGB 6 12130 28
e
E SWAIN-1991 [29] Joint 30 colour histogram rg-by-whb 2048 1130 21
S
RGB 6/30 1,7
g PIETIKAINEN-1996 [25] Three concatenated marginal histograms rab 768 530 20
4 111213 530 20
_3," Marginal histogram (H) 256 730 31
(1]
£ LEPISTO-2005 [15] Marginal histogram (V) HSV 256 7/30 16
E Two concatenated marginal histograms (H+V) 512 1030 24
‘E’ ? KONSTANTINIDIS-2005 [12] Histogram from fuzzy linking Lab 10 630 17
3 HANBURY-2003 [11) uration e 1 hue histogram HLS 360 730 19
a Colour ststistics histogram 100 830 25
F-
E Chromaticity moments 3-3 (original implementation) ] 330 33
e @
“a -
I i Chromaticity moments 5-5 (original implementation) 10 630 28
PASCHOS-2000 [22] xyY
T
Chromaticity moments 3-3 (image size invariant) 6 12130 1.8
£
= Chromaticity moments 5-5 (image size invariant) 10 11/30 20
LOPEZ-2005 [16] Mean value + standard dev. + marginal histogram moments RGE 21 12130 28

Table 1: Results of the comparative experiment.

image as belonging to a certain type of material (i.e.
“granite” or “wood”), and searches for images repre-
senting materials of the same type. This is particu-
larly evident for the search images 3, 4 (granite) and
6 (wood). We can argue that, in doing this semantic
search, an important clue is represented by the spa-
tial structure (texture) of the image, which is not con-

7 Conclusions

In this paper we presented a review of colour fea-
tures for content-based image retrieval. A classifica-
tion criteria is also proposed to catalog the various
colour-based techniques into meaningful categories.
A comparative experiment for the retrieval of materi-
als of industrial interest according to the criterion of
visual appearance is presented. The experiment is
based on a ground truth which was previously estab-
lished through the average response of a group of
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