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Abstract

In this paper we propose the application of rotation-invariant multilayer Coordinated Clusters Repre-
sentation (CCR) as a colour texture descriptor in image segmentation. Rotation-invariant multilayer CCR
is a twofold improvement of the original CCR: on the one hand, the proposed features combine textural
and colour information into a single model, and on the other hand, this image descriptor is robust against
texture rotation. The central idea is to describe the colour content of an image by means of a reduced set
of representative colours, and then to split the image into a stack of binary images, one for each colour
of the reduced palette. In order to achieve rotation-invariance the original square window is replaced by
a circular neighbourhood. The validity of the model has been demonstrated through the segmentation
of both synthetic mosaics of OuTex textures and multispectral Ikonos-2 satellite images. Experimental
results show that the proposed features have high discriminative power and yield increased accuracy
compared to other segmentation methods.
Keywords: colour texture, image segmentation, CCR

1 INTRODUCTION

Eyesight is the most important and complex human
sense. It provides a great amount of sensorial in-
formation that is processed by the brain and let us
interact with the world around. This fact justifies
the significance of computer vision –image analy-
sis using computers– as a research field. Recent
advances in imaging devices and computer pro-
cessing power have made feasible a wide variety
of computer vision applications, such as remote
sensing, medical diagnosis, robot vision, process
monitoring, quality control or security, to cite some.

Image segmentation –splitting an image into
meaningful regions of homogeneous properties–

is a preprocessing stage in many computer vision
applications. For image segmentation to be effec-
tive, a proper characterization of the input image is
needed. Unfortunately, there does not exist a gen-
eral purpose, universal approach to feature extrac-
tion, and therefore, the feature set depends on the
nature of the information conveyed by the images
to be processed.

Texture and colour are two of the most commonly
used cues for image segmentation. These at-
tributes have been traditionally regarded as sepa-
rate phenomena. However, in recent years, fusion
of colour and texture into a single model has re-



ceived a great deal of attention [3, 4, 5, 6, 7, 8, 13,
14, 16, 17, 22, 26, 27, 30].
Texture analysis techniques can be categorized
into four families: statistical features, structural fea-
tures, signal processing based features and model
based features [28, 31]. Statistical texture features
measure the spatial distribution of pixel values [12].
Structural features characterize texture through the
occurrence frequency of certain texture primitives,
and the spatial arrangement of these primitives.
Signal based features are usually extracted by ap-
plying filter banks to the image and computing the
energy of the filter responses [23]. Model based
features generally characterize texture by the esti-
mated parameters of the stochastic and generative
models used to represent images.
The Coordinated Clusters Representation (CCR) is
a binary texture descriptor that is halfway between
statistical and structural methods. In this model a
binary image is described by a histogram of oc-
currence of elementary binary texture patterns –
called texels– which are defined over a square win-
dow. The set of all the possible texels constitutes
a dictionary, in which each pattern is represented
by a decimal code. For this method to be applied
to gray-scale images, a prior global binarization is
required. This is a major issue, since the use of an
inappropriate threshold can wipe out textural infor-
mation. Recently a robust CCR-based model has
been proposed for colour texture classification [6].
This model, referred to as rotation-invariant multi-
layer CCR, yields a twofold improvement with re-

spect to the gray-scale CCR. First, the proposed
descriptor combines colour and texture informa-
tion; second, it is robust against changes in texture
orientation. In addition, as this model is intended
for colour texture rather than binary texture, there
is no need to perform global thresholding because
this troublesome task is replaced by colour index-
ing.

In this paper we propose the application of rotation-
invariant multilayer CCR to image segmentation.
The central idea is to describe the textural and
colour content of an image by splitting the original
colour image into a stack of binary images. Ro-
bustness against rotation is achieved by using cir-
cularly symmetric texels instead of the original 3×3
sliding window. To evaluate the performance of
the proposed features we have applied this method
to the segmentation of different colour and multi-
spectral images. Experimental results show that
rotation-invariant multilayer CCR features have a
high discriminative power and yield increased ac-
curacy with respect to other segmentation meth-
ods.

The remainder of this paper is organized as fol-
lows. In Section 2 we present the rotation-invariant
multilayer CCR model for colour texture. Section 3
outlines the overall segmentation method. Sec-
tion 4 details the benchmark data used in this ar-
ticle. Section 5 is devoted to describe the experi-
mental results, and Section 6 summarizes the con-
clusions that can be drawn from this work.

2 COLOUR TEXTURE MODEL

2.1 CCR features

The Coordinated Clusters Representation (CCR) is
a model that describes binary texture through the
occurrence frequency of the possible binary pat-
terns (texels) that can be defined over a square
window [15]. The dimension of these elementary
patterns is usually set to 3 × 3 pixels, since this
size provides good discriminative power at a rea-
sonable cost in terms of both computing speed and
memory usage. In this case, the feature vector –
denoted by CCR3×3– has 29 = 512 components.
This binary texture descriptor was later extended
to gray-scale texture images through thresholding
[24, 25]. However, the need for global binarization
is a major issue, since this preprocessing stage
can degrade textural information. The choice of a
proper binarization threshold is critical to preserve
texture characteristics.
All the pixels in a 3 × 3 texel with a digital level
greater or equal than the chosen binarization

threshold are assigned a digital value of 1. Be-
sides, each of the 9 pixels is weighted by a power
of 2. The CCR3×3 code is the sum of the weights
of those pixels where the binarization takes a value
of 1. It should be noticed that the weighting mask
is arbitrary. Indeed, a different arrangement of the
weighting factors would only result in a different
coding of the patterns.

2.2 Rotation-invariant CCR

Sensitivity to texture orientation is another draw-
back of the CCR model. In practical applications
it is important that features be invariant against
rotation, since images are rarely captured under
steady viewing conditions. Rotation-invariant CCR
features can be obtained following an approach
similar to the one proposed for the LBP3×3 oper-
ator [20].
The first step consists in replacing the squared



Figure 1: Schematic representation of the procedure to extract rotation-invariant multilayer CCR features

neighbourhood of the CCR3×3 by a circular one.
The intensity of the pixels that are not placed ex-
actly on pixels positions is estimated through bilin-
ear interpolation. We denote this model by CCR8,1.

In order to achieve rotation invariance, all those
patterns that are rotated versions of the same pat-
tern are mapped to the same primitive pattern.
This descriptor –denoted by CCRri

8,1– reduces the
dimension of the feature space (i.e., the number of
bins of the histogram) from 512 to 72 [10].

If we only consider the uniform patterns, i.e., those
patterns where the number of transitions in the
eight peripheral pixels is at most two, regardless
of the value of the central pixel, a further reduc-
tion in the dimension of the feature space can be
achieved. To be precise, there are 18 possible uni-
form texels in an 8-neighborhood of radius 1. The

remaining non uniform patterns are accumulated
into an additional 19th bin. We refer to this feature
space as the CCRriu2

8,1 .

2.3 Multilayer CCR

The multilayer CCR is an extension of the CCR
which integrates texture and colour into a single
model [6]. The key point is to describe the colour
content of an image through a suitable set of its
most representative colours (palette), and then to
split the image into a stack of binary layers, one
for each colour of the palette. To this end, each
pixel is assigned an index encoding the colour of
the palette which is most perceptually similar to the
pixel colour, and then it is set to one in the layer
corresponding to this index, and to zero in the re-



maining layers. The overall feature vector for each
pixel is formed by the codes of the corresponding
binary patterns that occur in each layer.
There are two main approaches to generate the re-
duced colour palette. On the one hand, an image-
independent palette can be generated by colour
space quantization, which can be straightforwardly
implemented by dividing the RGB colour cube into
equally-sized parallelepipeds. This implies that the
resulting palette is invariable, i.e., the same palette
is used for all the images to be processed. This
approach has been successfully applied to colour
texture classification [6]. Colour space quantization
can be generalized to multispectral imaging by par-
titioning the n-dimensional space into equal-sized
buckets. On the other hand, an image-dependent
palette can be generated through colour cluster-
ing. In doing so, the palettes corresponding to

different input images are different because they
depend on the colour distribution of each image.
We tested both approaches and found that colour
clustering significantly outperforms uniform colour
space quantization. Based on the results of this
preliminary study we adopted the latter approach,
using one of the most popular colour clustering im-
plementations: the k -means algorithm. Once the
colour palette is generated, the colour triplet –or
n-tuple in case of multispectral imaging– of each
pixel is replaced by the index of the colour in the
palette that most closely resembles the original
colour. This process is referred to as colour in-
dexing. To that end, it is necessary to quantita-
tively define the perceptual “closeness” of a pair
of colours. In this work we used the euclidean dis-
tance between the corresponding colour triplets (or
n-tuples).

3 DESCRIPTION OF THE METHOD

The segmentation process is divided into two
phases: training and testing. The first step of
the training phase consists in generating a colour
palette through either uniform colour space quan-
tization or colour clustering, as described in Sec-
tion 2.3. Henceforth the number of palette colours
is referred to as N. We found that colour clus-
tering outperforms uniform colour space quantiza-
tion in roughly 20 percentage points of segmen-
tation accuracy, and hence this was the approach
we adopted. To generate the colour palette, the
n-tuples of the original image were fed to the k -
means clustering algorithm, where n denotes the
number of bands of the image. Then, the 3 × 3
square neighbourhoods are transformed into circu-
lar neighbourhoods through bilinear interpolation
(see Section 2.2), and subsequently, each pixel
is assigned the index of the closest colour in the
palette. It is useful to note that replacing the 3 × 3
window by a circular neighbourhood in a colour im-
age involves n interpolations of the values of the
neighbours that do not lie exactly on the original
pixels positions, i.e. the bilinear interpolation has
to be performed over each channel separately.

The next step consists in assigning a feature vec-
tor to each pixel. For this aim, the indexed circu-
lar patterns are split into N binary circular patterns,
one binary pattern for each colour of the palette. A
pixel that has been assigned the index i in the in-
dexed pattern takes a value of 1 in the binary pat-
tern corresponding to colour i, and 0 in the rest of
the binary patterns. Each of the N circular binary
patterns is assigned the code of the corresponding
rotationally invariant patterns. The pixel is finally

assigned a feature vector which is made up of the
codes of the corresponding elementary patterns.
The overall procedure is schematically depicted in
Figure 1.
Once the feature vectors of the pixels of the train
images have been computed, the last step con-
sists in choosing an appropriate classifier. It is well-
known that the classifier performance is strongly
dependent of the specific domain of the applica-
tion. In view of the limited a priori knowledge
we had, we considered that it would be worthy to
try different classifiers in order to choose the best
suited for our particular application. To accom-
plish this task we used the Waikato Environment
for Knowledge Analysis (WEKA1) workbench [29].
The error rates obtained in these trials were very
similar, independently of the classification scheme.
In view of this, we chose the RandomTree algo-
rithm [29], due to its inherent ability to manage with
the kind of features we propose in this paper and
its reasonable computational complexity.
In the testing phase we have to compute rotation-
invariant multilayer CCR features for each pixel of
the image to be processed following the method
just described, with the only difference that in this
case we have to use the palette generated in the
training phase. These features are then submitted
to the RandomTree classifier which has been pre-
viously trained. The classifier returns a class label
for each pixel of the test image. In order to make a
realistic estimation of the generalization error, the
image used for testing should be different from the
image used for training.
Finally, to evaluate the accuracy of the method,

1http://www.cs.waikato.ac.nz/ml/weka/



segmentation results are shown as indexed maps,
where the pixel labels assigned by the classifi-
cation algorithm are colour-coded for visualization
purposes. Besides these maps, we computed sev-

eral figures of merit to quantitatively assess perfor-
mance, namely succes rate, precision and sensi-
tivity, which will be described in Section 5.

(a) (b) (c) (d) (e)

Figure 2: Synthetic mosaics of OuTex textures: (a) train images, and (b) test images, and segmenta-
tion results obtained using a palette of: (c) 5 colours, (d) 15 colours, and (e) 35 colours. Each row
corresponds to a different mosaic.

4 BENCHMARK DATA

In order to assess the validity of the proposed
method, we applied the rotation-invariant multilayer
CCR model to the segmentation of two different
types of images, which are briefly described in the
following subsections.

4.1 Texture mosaics

The first group is composed of synthetic mo-
saics of texture images taken from the OuTex
database [21]. OuTex images are commonly used
by the computer vision community as an evalua-
tion framework for texture analysis. We selected

a subset of 25 textures of the group inca 100dpi
from the OuTex library. Five different mosaics of
746×538 pixels have been generated, each mosaic
being formed by five different textures, as shown in
Figure 2. It is important to note that the mosaics
used for training contain the same textures than
the mosaics used for testing, but as one can read-
ily see from Figures 2(a) and 2(b), the patches of
a given texture in the train mosaic and the test mo-
saic correspond to non overlapping samples of the
original OuTex texture. The mosaics were created
this way in order to keep the training and testing
stages independent of each other, and hence, to



Figure 3: Study site areas from Ikonos-2

Table 1: Percentage of correctly classified pixels in OuTex mosaics. The mosaic number refers to the
corresponding row in Figure 2

Number of colours

Mosaic 5 15 35

1 70.58 83.73 89.90
2 62.94 80.82 80.16
3 74.40 75.64 77.64
4 75.23 93.84 96.92
5 53.74 84.38 85.20

avoid underestimation of the generalization error.

4.2 Satellite imagery

The mosaics described above are composites of
textures imaged in a highly controlled laboratory
environment. In real world applications, it is un-
common to achieve these ideal conditions. There-
fore, in order to further validate the proposed ap-
proach, we used a second dataset formed by
high resolution Ikonos-2 satellite imagery –R, G,
B and NIR bands– of Campo de Níjar, in Almería
province, south-eastern Spain (see Figure 3). Two
non overlapping subimages of 498×465 pixels and
634×594 pixels have been cropped from the whole
image, one for training and one for testing. These

subimages are shown in Figure 4(a). Our goal is
to demonstrate the effectiveness of the rotation-
invariant multilayer CCR features in the detection
of areas covered by plastic greenhouses. Green-
house agriculture located in the southeast of Spain
concentrates the highest production of vegetables
in the Iberian peninsula. The economic strength
of this sector has caused a rapid and uncontrolled
greenhouse surface expansion, and as a conse-
quence, environmental threats have arisen [2]. A
proper way to measure and control the covered
surface and its evolution through time is being in-
creasingly demanded by the government. The ap-
plication of remote sensing and image processing
techniques would be a helpful tool for the agricul-
tural authorities to manage the greenhouse farm-
ing sector.

5 EXPERIMENTAL RESULTS AND DISCUSSION



(a) (b) (c)

Figure 4: (a) Cropped subimages from Fig. 3, (b) manually delineated ground reference data, and (c)
detected greenhouses. First row corresponds to region A, and second row corresponds to region B.

We performed a set of segmentation experiments
using the rotation-invariant multilayer CCR over the
two datasets described in the preceding section.
For this purpose we implemented our own image
processing algorithms in Matlab. We first studied
the influence of colour quantization on the perfor-
mance of the proposed approach. We found that
segmentation accuracy is strongly affected by the
number of colours that form the reduced colour
palette. Figures 2(c) - 2(e) –corresponding to
a palette of 5, 15 and 35 colours, respectively–
clearly show that the greater the palette size, the
higher the segmentation accuracy, as one could
expect. However, it should be noted that in practice
there is an upper limit for the number of colours,
since computational overhead grows exponentially
with the palette size. In addition to the visual as-
sessment provided by Figure 2, we computed the
percentage of correctly classified pixels as a fig-
ure of merit for the segmentation. Quantitative re-
sults obtained for OuTex mosaics are gathered in
Table 1. From both this table and Figures 2(c) -
2(e) we can see that there is a great spread in per-
formance: a success rate close to 100% can be
achieved, but there are also cases in which con-
siderable confusion between classes occurs. This
fact is most evident in coarse textures and in mo-
saics that contain two or more patches with similar
visual properties.
As we have previousy said (Sect. 3), we tested dif-
ferent classification algorithms implemented in the
WEKA suite in order to choose the most suitable
classifier. From this trials we found that classifica-
tion results were fairly independent of the algorithm

employed. Indeed, Table 3 makes it apparent that
there are little variations in success rate from one
algorithm to another. We chose the RandomTree
algorithm [29] since this classifier performs well
over our datasets and has a relatively moderate
computational complexity.
The second part of the experimental activity fo-
cuses on the satellite imagery described in Sec-
tion 4.2. Herein the objective is to discriminate the
greenhouses from the rest of elements in the im-
age, such as soil, roads, water pools, etc. From
Figure 4(a) one can easily see that the visual ap-
pearance of the greenhouses may vary apprecia-
bly from one instance to another. Such differ-
ences should not be surprising, since the spec-
tral signature of plastic strongly depends on factors
like viewpoint, chemical composition and age [1].
Considering all the greenhouses as belonging to a
unique class would lead to under-detection. Thus,
we have grouped the greenhouses into four types
from mere visual inspection. Figure 4(b) shows
the manually defined ground reference data, and
Figure 4(c) shows segmentation results. Careful
observation of the lower rightmost corner of re-
gion A reveals the presence of abandoned green-
houses, which will likely introduce classification er-
rors. Apart from the percentage of correctly classi-
fied pixels, we computed two additional figures of
merit: sensitivity and precision. Sensitivity mea-
sures the proportion of correctly classified target
pixels. Precision is the number of true positives
divided by the total number of elements labeled as
positives, so it can be regarded as a measure of ex-
actitude [29]. The numerical results are gathered



Table 2: Numerical results (expressed in percentage) obtained for Ikonos-2 satellite imagery
Test area Success rate Sensitivity Precision

A 86.68 65.71 84.06
B 82.38 81.01 69.53

Table 3: Pixel classification accuracies obtained with different classifiers over OuTex dataset with a
palette of 15 colours obtained through k -means colour clustering.

WEKA algorithm Success rate (%)

Bagging (J48) 85.32
BayesianNetwork 83.33

MultilayerPerceptron 84.07
NaiveBayes 80.15
RandomTree 85.30

RandomForest 85.35
Support Vector Machine 80.51

in Table 2. It should be noted that in the calcula-
tion of these figures of merit only two classes are
considered: ‘greenhouse’ and ‘background’, and
therefore, all the pixels labeled as greenhouse –
irrespective of the particular type of greenhouse–
are merged into a single class.
In this experiment, the palette size was set to 15
since we found that this value is a good tradeoff be-
tween segmentation accuracy and computational
burden. Although Ikonos-2 imagery consists of 4
bands (R, G, B and NIR), we only used the RGB
bands and neglected the NIR band. This deci-
sion was based on the fact that including the in-
frared band produces only a slight improvement in
segmentation accuracy, whereas provokes a sig-
nificant raise of the computational overhead.
For comparison purposes, we tested our bench-
mark data with two different methods: Bayesian
classifier and AdaBoost algorithm. In both cases
each pixel is represented by either a RGB triplet
for the OuTex dataset or a RGB+NIR quartet for
the Ikonos-2 dataset. The Bayesian classifier is
a classical, well-known classifier that assigns to
each pixel the class with the maximum a poste-
riori probability [9]. Our implementation relies on
the hipothesis that the probability density function
of pixel intensities is a multivariate Gaussian distri-
bution [11]. Spatial AdaBoost is a state-of-the-art

machine learning technique for contextual super-
vised image classification of land-cover categories
of geostatistical data [18, 19]. The method classi-
fies a pixel through a convex combination of a log
posterior probability at the current pixel and aver-
ages of log posteriors in various neighbourhoods
of the pixel. Weights for the log posteriors are
tuned by minimizing the empirical risk based on the
exponential loss function. In our implementation
we used the inverse of the Mahalanobis distance
as weak classifier. The results of these tests are
shown in Figures 5(a) and 5(b), and Table 4.
The noisy aspect of Figure 4(c) indicates that most
of the incorrectly classified pixels belong to small
speckles or even are isolated pixels. This hap-
pens because the segmentation algorithm works
on a per-pixel basis, i.e., each pixel is assigned a
class label based exclusively on its feature vector.
As described in Section 2.3, this feature vector only
takes into account a 3×3 pixel neighbourhood, dis-
regarding the spatial relationships with more dis-
tant pixels. One could reasonably expect that re-
moving the small isolated clusters of wrongly clas-
sified pixels from the segmented image would in-
crease accuracy. To this end we successfully im-
plemented diverse morphology and smoothing fil-
ters, which gave rise to improved outcomes, as can
be ascertained from Figure 5(c) and Table 4.

6 CONCLUSIONS

In this paper we presented the rotation-invariant
multilayer CCR descriptor for colour texture. The
validity of the proposed model has been demon-
strated through image segmentation of mosaics of
OuTex textures as well as greenhouse detection
from high resolution Ikonos-2 satellite imagery. Ex-
periments show that the proposed colour texture
features have high discriminative power and yield

increased accuracy compared to other segmenta-
tion methods, such as the Bayesian classifer and
Spatial AdaBoost. Furthermore, the proposed fea-
ture set is robust, since similar segmentation re-
sults are obtained by employing different classi-
fiers. The obtained results suggest that the appli-
cation of a post processing stage to remove noise
may substantially improve classification acuracy.



(a) (b) (c)

Figure 5: Segmentation results obtained using: (a) Bayesian classifier, (b) Spatial AdaBoost, and (c)
rotation-invariant multilayer CCR, RandomTree classifier and median filtering. The test images corre-
sponding to the first and second rows are Figure 2(b) (second row) and Figure 4(a), respectively.

Table 4: Percentage of correctly classified pixels for different segmentation methods
Test image Bayes Spatial AdaBoost Our approach

without filtering with filtering

Figure 2(b) , first row 85.52 89.73 89.90 99.79
Figure 4(a) 85.28 75.35 86.68 96.45
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