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Abstract The aim of this paper is to conduct a perfor-
mance evaluation where several texture descriptors such
as Local Binary Patterns (LBP), Coordinated Clusters
Representation (CCR) and (Improved Local Binary Pat-
terns) ILBP are applied for granite texture classification.
In our work we were particularly interested to assess the
robustness of the analysed texture descriptors to image
rotation when they were implemented in both the stan-
dard and rotation invariant forms. In order to attain this
goal, we have generated a database of granite textures
that were rotated using hardware and software proce-
dures. The experimental data indicates that the ILBP
features return improved performance when compared
to those achieved by the LBP and CCR descriptors. An-
other important finding resulting from this investigation
reveals that the classification results obtained when the
texture analysis techniques were applied to granite im-
age data rotated by software procedures are inconsistent
with those achieved when the hardware rotated data is
used for classification purposes. This discovery is sur-
prising and suggests that the results obtained when the
texture analysis techniques are evaluated on syntheti-
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cally rotated data need to be interpreted with care, as
the principal characteristics of the texture are altered by
the data interpolation that is applied during the image
rotation process.
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1 Introduction

Texture analysis is an area of active research in machine
vision. Five canonical problems related to texture analy-
sis are segmentation, classification, synthesis, shape from
texture and image retrieval. Texture classification tech-
niques find one of their most important industrial ap-
plications in grading products according to their visual
appearance. In many industrial sectors, e.g. paper [47],
ceramic tiles [18], wood [45], leather [15], marble [32],
fabric [3], painted slates [13], etc., there is a growing in-
terest in systems that perform this task automatically.
In recent years, great effort has been put into develop-
ing laboratory prototypes. However, to the best of our
knowledge, commercial systems suitable to grade these
products in an industrial environment are not yet avail-
able.

Granite industry is also concerned in the develop-
ment of an automated machine vision system for sorting
granite plates in lots that exhibit similar visual charac-
teristics. Due to its combination of strength, beauty and
affordable price, granite has become increasingly popular
in facade cladding and pavement covering. The price of
granite, just like other ornamental materials, is mainly
determined by its aesthetical value (i.e. visual appear-
ance) rather than its mechanical properties. There is a
wide range of commercially available granite varieties,
with different predominant colours (green, pink, black,
red, etc.) and textures (veined, speckled, homogeneous,
etc.). Existing standards for granite inspection focus on
geometrical specifications, such as longitudinal dimen-
sions of blocks, flatness of slabs or straightness of tile
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edges. However, the specification of visual appearance
is imprecise [44]. Granites have been usually designated
by a generic name beside the predominant colour, for
example “Baltic Brown”, “Emerald Pearl” or “Imperial
Pink”. It should be pointed out that this terminology
varies from one country to another. Globalization has
increased the need for a standard denomination of gran-
ites. The solution adopted is to give a product name
and to specify the place of origin for any particular rock,
in addition to the traditional name and typical colour
[12]. This nomenclature is useful when viewed from a
commercial perspective, but is not so relevant in the
process of grading automatically the granite plates. The
problem is not solved by using more sophisticated petro-
graphical descriptions, because the visual appearance of
granites with the same mineralogical nature may differ
significantly. The lack of precision in the specification
of visual appearance often leads to controversial situa-
tions between customers and suppliers. In many cases,
the customer refuses a lot of granite plates arguing that
it does not resemble the sample that served as basis for
the purchase. Another frequent source of complaint is
the lack of uniformity in the visual appearance of the
plates that make up the lot. As a result of these con-
flicts, granite companies can incur heavy losses due to,
on the one hand, costly shipping charges, and on the
other hand, penalties established in the contract to com-
pensate for delays in building works owing to late deliv-
ery. In order to overcome these issues, granite industry
has implemented quality control procedures, consisting
of a visual inspection performed by a skilled operator.
Although this qualitative assessment prevents lot rejec-
tion to a great extent, it is not a satisfactory solution
because the decisions made by the human operator are
subjective (being highly biased by the experience of the
skilled operator) and non-repetitive.

A number of papers on automatic classification of
granite textures have been published in the last few years.
Former approaches to granite texture modeling were based
on colour features, such as colour histogram [46] or chro-
maticity moments [38]. Later, better results were ob-

tained through gray-scale texture classification approaches,

such as co-occurrence matrices [37,36], Gabor filter banks
[24,4] and Coordinated Clusters Representation (CCR)
[20,42,14]. This is motivated by the fact that the granite
plates are defined by strong crystalline structures while
the color information is less pronounced. Most recently,
classification accuracy has been further improved by con-
sidering colour and texture features jointly [22,7]. In all
these works the granite images were recorded under con-
trolled environmental conditions. Achieved recognition
rate ranges from ~70% to 100%. This spread in the clas-
sification accuracy may be partly explained by the differ-
ent performance of the features and classifiers used, and
the intrinsic difficulty of the dataset, but it is useful to
note that factors related to the image acquisition proce-
dure may have an important effect on the classification

results. Additional factors that may effect on the classi-
fication accuracy include parameters such as image size,
noise, quantization level and the degree of similarity be-
tween granite textures. Furthermore, the lowest values
of misclassification rate were obtained when the train
and test images were overlapped subimages of a texture
image. This is a frequent solution when few texture im-
ages are available to train the classifier. However, us-
ing overlapped texture images invariably leads to under-
estimation of the generalization error. Nowadays, there
is a trend in the granite texture classification research
community of pooling the output of several classifiers
designed in different feature spaces [25-27] in order to
attain increased ensemble success rate.

Sensitivity to rotation is a major issue in certain ap-
plications of texture classification. The overall perfor-
mance of a texture classifier may be totally degraded
if the unknown patterns to be classified are slightly ro-
tated with respect to the training samples. Provided that
real-world textures can occur at any orientation, a large
emphasis has been put in the development of rotation in-
variant texture descriptors. Rotation invariance has been
often accomplished by modifying well-known non invari-
ant approaches, such as wavelets, Markov random fields
and Gabor filtering [39]. The same happened in the case
of local binary patterns (LBP), which were first defined
for a 3 x 3 pixels squared neighbourhood, and were later
generalized for circular domains [34] to remove sensitiv-
ity to rotation.

The main goal of this paper is to evaluate LBP, CCR
and ILBP features when applied to the classification of
granite images in order to determine which descriptor
is most effective. The reason why we chose this fam-
ily of texture descriptors among the vast plethora of
features currently available is multiple-fold. First, these
techniques offer an excellent approach to analyse the tex-
ture at micro level by analysing the distribution of the
local texture elements (i.e. local binary patterns) and
in addition they entail a low computational overhead, a
fact that makes them attractive when applied in the im-
plementation of real-time industrial applications. Thus,
by using these techniques one could achieve real-time
processing in a manufacturing plant, since current hard-
ware allows feature extraction from granite plates at a
higher rate than the operational speed of the conveyor.
Second, the local binary pattern related techniques are
parameter-free and as a result they do not require com-
plex optimisation procedures, as many other methods
do. Third, the LBP, CCR and ILBP texture descriptors
are intrinsically invariant to changes in illumination in-
tensity and monotonic image transforms. Fourth, these
features have been proven to be effective and accurate in
discriminating texture. Due to the advantageous char-
acteristics just mentioned, the binary pattern is a well-
known approach to texture analysis (with the main focus
being placed on the LBP model) and it has received sub-
stantial interest from image analysis practitioners. In this
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study, we evaluate two different approaches to achieve
rotation invariance: grouping circularly symmetric pat-
terns and computing the DFT of features. These meth-
ods were applied to all the features considered. In our
experiments we employed one database of granite tex-
ture images recorded in the lab by means of a portable
acquisition system, formed by a still camera and a special
illumination set-up. To quantitatively assess the robust-
ness against rotation of LBP, CCR and ILBP we have
performed classification trials for different relative orien-
tations of the test samples with respect to training sam-
ples. Our results confirmed previous findings on these
texture descriptors [33,41,7] by showing that: (a) their
basic versions are very efficient in recognizing unrotated
textures and, (b) the rotation invariant versions are, to
a great extent, robust against rotation. However, we sur-
prisingly found that the performance of the supposed ro-
tation invariant versions of LBP, CCR and ILBP strongly
depends on the method through which the rotated tex-
tures are obtained (either hardware or software). We also
found that the degree of immunity against rotation also
depends on the methods employed to make features ro-
tation invariant.

The remainder of the paper is organized as follows:
LBP, CCR and ILBP features are reviewed in Section 2.
The methods for achieving rotation invariance are ex-
plained in Section 3. The prototype for granite image
acquisition is described in Section 4. Quantitative assess-
ment of sensitivity to rotation of the considered texture
descriptors is presented in Section 5, and Section 6 con-
cludes the paper.

2 LBP and CCR texture models

A key issue in texture classification is the choice of a
suitable model to represent texture. There exists a great
number of approaches, which are commonly divided in
four categories: statistical, structural, model-based and
signal processing methods [50]. Statistical approaches de-
scribe the texture in terms of the spatial distribution
of the pixel intensities, while structural methods regard
the texture as the hierarchical distribution of certain im-
age primitives. LBP, CCR and ILBP are closely related
texture descriptors that lie between both approaches. In
fact, LBP has been proposed as the unifying approach
to the traditionally divergent statistical and structural
methods [31].

LBP, CCR and ILBP are inspired in the texture spec-
trum approach, which exploits the occurrence of certain
elementary patterns, called texture units [48]. A texture
unit is defined by the local distribution of the intensi-
ties of adjacent pixels in a 3 x 3 neighbourhood, each of
which can take three possible values. All these features
may be considered two-level particularizations of the tex-
ture spectrum. The underlying idea is that a texture can
be represented through a histogram which quantifies how

frequently binary patterns appear in it. The remainder of
this section is devoted to describe these texture models
in their basic versions.

2.1 LBP

The basic version of the LBP texture operator, denoted
by LBP3y3, works with the eight neighbours of a pixel,
using the gray level of the central pixel as a binarization
threshold. To produce a LBP3y3 code for a neighbour-
hood, binary values are weighted with different powers of
two, and the result is summed up [31]. Since the binary
pattern is formed by 8 bits, there are 28 different binary
patterns, and hence, the LBP3, 3 histogram has 256 bins
(Fig. 1(a)). A number of extensions to the basic LBP op-
erator have been developed [34]: (a) rotation invariant,
(b) multiple resolutions and, (c) contrast complementary
measure. In this paper we focus on rotation invariance.

2.2 CCR

The CCR texture descriptor was first proposed by Kurmy-
shev and Cervantes [19]. This model, which was orig-
inally intended for binary textures, relies on the his-
togram of occurrence of the elemental patterns of binary
texture, called texels, that can be defined in a square
window. The dimension of these elementary patterns is
usually set to 3 x 3 pixels, since this size provides good
discriminative power at a reasonable cost in terms of
both computational speed and memory usage.

The CCR model was later applied to gray-scale tex-
ture images through global image thresholding. A thor-
ough literature review revealed that very similar approaches
were proposed almost at the same time by different au-
thors who worked independently. A research group from
Krasnoyarsk State Technical University, Russia, presented
in 2002 a technique for the analysis of anisotropy of dig-
ital images that, when particularized to binary images,
closely resembles the CCR concept [17]. In this case, the
key elements of their method, namely frequency mosaic
and smalts, play the role of CCR histogram and texels,
respectively. The natural extension of the former CCR
features to gray-scale texture classification was reported
in 2003 by a group from the Center for Research on Op-
tics, Mexico [41,42]. In the same year, a group from the
Yuan-Ze University, Taiwan, proposed the local edge pat-
tern (LEP) texture model [51]. The basic idea is to ob-
tain an edge image by applying the Sobel edge detector
to the intensity channel of colour images, and then to
binarize the edge image by using a heuristic threshold
(150 in their implementation). The spatial structure of
the resulting binary image is described by the histogram
of LEP patterns, which are actually the texels of the
CCR model.

In principle, thresholding can cause significant loss of
information in the original image and, as a consequence,



Antonio Ferndndez et al.

LBP, LeP], LBPg:
0.2 0.2 0.2
0.15 0.15 0.15
0.1 0.1 0.1
0.05 0.05 0.05
Dwﬂwﬂl}% oA T - mmal o ol ‘s vadadloo vovaa " 1.(!3
(a) (b) (c)
CCR, CCRY CeRrgy
0.4 0.4 0.4
0.35 0.35 0.35
0.3 03 0.3
0.25 0.25 0.25
0.2) 0.2 0.2
0.15 0.15 0.15
0.1 0.1 0.1
0.05 0.05 0.05
o TP wo )l al 0 I | I | 'R I I I OL“,L L L L L | L
1 512 1 72 1 326
(d) (e) (f)
ILBP,.s ILBPG Lerg’
0.25 0.25 0.25
0.2] 0.2 0.2
0.15 0.15 0.15
0.1 01 0.1
0.05 0.05 J 0.05 ‘
h‘nlh]l.“”] Y N NLJ‘HHH . | wuls by ‘I I || i . ‘l . I|JJ|I| ol
o 0 0
1 511 1 71 1 325
() (h) (i)

Fig. 1 Feature histograms corresponding to the granite texture Azul Platino (Fig. 5), obtained with the ’following operators:
(a) LBP3ys, (b) LBPE, (c) LBPET T, (d) CCRaxs, (e) CCREY, (f) CCRETT, (g) ILBPsys, (h) ILBPg, and (i) ILBPET .

some textures could become indistinguishable. Thresh-
old should be judiciously chosen in order to preserve
textural information. A great variety of image thresh-
olding techniques have been proposed in literature [43].
So far, two thresholding methods have been applied to
CCR, namely fuzzy C-means clustering [41] and isoen-
tropic partition [5]. A major drawback of the fuzzy C-
means algorithm is its intrinsic randomness. This means
that different executions could yield different thresholds
for the same image. To avoid this issue, in this work we
used the isoentropic quantization approach. Briefly, in
this method the binarization threshold is the gray level
which splits the entropy of the gray-level histogram of
an image into two equal parts.

The procedure to assign a CCR3x3 code to a texel
is analogous to the LBP3y3 case. The main difference

with respect to LBP3«3 is that the threshold used to
binarize the texture image is global rather than local.
Consequently, texels are formed by 9 bits, and therefore
the CCR3x3 histogram has 29=512 bins (Fig. 1(d)).

2.3 ILBP

The ILBP (Improved Local Binary Patterns) [16] can be
considered a hybrid between the CCR and the LBP: on
the one hand, the ILBP resembles the CCR model in
that all the pixels of the 3 x 3 window are used (while
in the case of the LBP the central pixel is discarded);
on the other hand, the ILBP resembles the LBP in that
local thresholding is used (while in the case of the CCR
thresholding is global). The local threshold is computed
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by averaging the gray-level values of the 3 x 3 neigh-
bouring pixels. The number of different ILBP patterns
is 22 — 1 = 511, since, by definition, it is impossible that
all the pixels of the neighbourhood are lower than the
average value.

2.4 Considerations about LBP, CCR and ILBP

The above described models characterize texture by means
of a histogram which quantifies the relative occurrence of
certain binary patterns. The only difference is that LBP
and ILBP use a local binarization threshold, while CCR
uses a global one. Strictly speaking the LBP and ILBP
are models to characterize gray-scale textures, whereas
the CCR model is intended to describe binary textures.
Thus, when the CCR approach is applied to gray-scale
textures, a pre-processing step that involves the binari-
sation of the input image has to be applied prior to the
calculation of the binary texture units.

Let’s now consider a finely defined texture, like those
shown in Fig. 5. There is a high probability that all the
pixels of a 3 x 3 neighbourhood have gray levels below
or above a global threshold. In contrast, the probabil-
ity that all the outer pixels have gray levels below or
above the gray level of the central pixel is quite low. Ac-
cordingly, the relative frequency of the binary patterns
formed by all 0’s or 1’s (from now on these patterns
will be referred to as constant patterns) is low when the
LBP3«3 operator is used, while in the CCR3x3 model
these patterns are the majority. Regarding the ILBP con-
stant patterns, the one formed by all 1’s is very unlikely,
while the one formed by all 0’s cannot occur at all by
definition. Such considerations explain why the CCR3x3
histograms present two pronounced peaks located at bins
1 and 512 (of Fig. 1(d)), which correspond to completely
black texels and completely white texels, respectively.
These peaks are less pronounced in the case of the LBP
(Fig. 1(a))) and vanish in the case of the ILBP (Fig.
1(g))). It should be noticed that in Figs. 1(a)-1(i) the
histogram bins have been labeled using correlative num-
bers from 1 to the dimension of the feature space, rather
than assigning a bin to the decimal code representative
of the corresponding binary pattern.

The last point worth discussing is the theoretical foun-
dation of these texture models. The aptitude of the LBP
and ILBP models to characterize gray-scale textures re-
lies solely on the excellent results obtained in texture
classification experiments. In contrast, the effectiveness
of the CCR model in discriminating binary textures is
supported by certain underlying statistical principles.
The fundamental properties of CCR3x3 features were
stated in two theorems [19]: the first theorem establishes
the structure of the CCR of periodic binary images, and
the second one establishes the relation between the CCR
histogram and the correlation moments of n-th order of
a binary image. It is widely recognized that the second
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Fig. 2 Rotated versions of a binary pattern, which are
merged in the same bin of the (a) LBPg’; and (b) CCRgh
histograms. Pattern codes are indicated underneath.

and higher order joint probability density functions pro-
vide structural information about a gray-scale texture.
If the gray-scale texture to be classified is thresholded
in a way that keeps sufficiently enough structural infor-
mation, the arguments above demonstrate that the CCR
model is highly suitable for recognition and classification
of gray-scale texture images.

3 Rotation invariance

We considered two approaches to obtain rotation invari-
ant versions of the above described texture models. The
first one is based on rotation invariant patterns, the sec-
ond one uses the Discrete Fourier Transform. The two
methods are described in the following subsections. The
first step of both methods consists in replacing the orig-
inal 3 x 3 window by a circular one. The values of neigh-
bours that do not lie exactly on the original pixels po-
sitions are estimated through bilinear interpolation [34].
The resulting feature spaces are referred to as LBPg 1,
ILBP&l, and CCRg,l.

3.1 Rotation invariant patterns

The rotation invariant LBP operator, denoted by LB gfl,
is straightforwardly achieved by considering that the dif-
ferent patterns obtained by rotating a particular pattern
in 45° steps are actually the same pattern, and therefore
they can be grouped together [34]. In this manner, the
descriptor becomes more compact since the number of
bins of the histogram reduces to 36 (Fig. 1(b)). This situ-
ation is illustrated in Fig. 2(a) for the pattern coded 167.
This pattern and its rotated versions (namely 61, 79, 122,
158, 211, 233 and 244) are merged in bin number 26 of
the LBP§’; histogram. The constant patterns, those bi-
nary patterns in which all the pixels take the same value
0 or 1 (e.g. patterns 0 and 255) remain the same when
rotated. Rotation invariance of CCR and ILBP features
can be obtained in a similar way [7]. In these cases the
resulting number of bins of the histogram is 72 and 71
(Figs. 1(e) and 1(h)), respectively . An example is shown
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in Fig. 2(b), where the pattern coded 102 is represented
together with its rotated versions (namely 105, 135, 204,
267, 300, 417 and 450). These eight patterns are merged
in the bin with the index 35 of the CCRg’; and ILBPg,
histograms.

It is useful to notice that the rotation invariant pat-
terns may be approached from the standpoint of abstract
algebra. Indeed, an important result from combinatorial
group theory, the Cauchy-Frobenius lemma [49], is a suit-
able tool to determine in a formal fashion the number of
groups of rotationally equivalent patterns. For the sake
of simplicity we will use instead a more concise state-
ment, known as the Burnside theorem [2]. Let G be a
permutation group (in this context the term group de-
notes an algebraic structure) that acts on a set S. The
theorem says that the number of equivalence classes into
which S is divided by the equivalence relation induced
by G is given by:

#{5/G} = ﬁ ST 45} (1)

TeG

where #{-} stands for “cardinality of” and Sy is the set
formed by the elements of S that are invariant under
permutation 7. For the purpose of particularizing the
general statement of the theorem to the case of circular
binary patterns, it is insightful to translate the mathe-
matical jargon to common language as well as to identify
the different terms in Eq. 1. Thus, the cardinality of the
quotient set S/G is simply the number of different rota-
tion invariant circular binary patterns, i.e., the number
of histogram bins of the texture model considered. The
permutation group G is the set of all the rotations that a
circular pattern can undergo, namely g, 745, 790, 7135,
T180, T225, To7o and 7315, corresponding to rotation an-
gles of 0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°,
respectively. Hence, #{G} = 8. To alleviate notation we
write p, to denote #{Sx,_}, i.e., the number of circular
binary patterns that remain unchanged after a rotation
by a degrees. The dimensionalities of the LBP, CCR and
ILBP rotation invariant feature spaces can be obtained
through the following formula:

(Po + Pas + Poo + P13s + P1so + P22s + P22s + P2ro)
8

(2)

Let us first consider the LBP model. Trivially, py =
28, since there are 256 different LBP patterns, and all of
them remain the same after a 0 degrees rotation. Also
trivially, pss = p135 = Po22s = p315 = 2, since the only
invariant patterns against rotation by 45°, 135°, 225°
and 315° are the constant patterns. Let us now unwrap
the circular binary patterns to form binary strings. A
counter-clockwise rotation of the circular pattern by an
angle of 45 x n degrees is equivalent to a circular shift of n
positions leftwards to the string, where n being a natural
number. Taking this into account, one can readily ascer-
tain that 01010101, 10101010 and the constant patterns

are the only patterns that remain unchanged after rota-
tion by either 90° or 270°, and hence, pgg = pa7o = 4.
Let b7bgbsbibsbabiby be a generic 8-bit binary pattern,
with b; € {0,1} Vj, and let b3bab1bobrbsbsbs the same
pattern after a 180° rotation. The original pattern is in-
variant against 180° rotation if and only if the following
conditions are simultaneously fulfilled: b7 = b3, bg = b,
bs = by and by = by. There are obviously 2% solutions for
this binary-valued system of four parametric equations,
and therefore p1gp = 16. Introducing all these values in
Eq. 2 yields:

(256 +2+4+2+16+2+4+2)
8

Considering that if we enhance an 8-bit LBP circu-
lar patterns by adding the central pixel we get two 9-bit
CCR circular patterns, and following a reasoning anal-
ogous to the one exposed in the preceding paragraph,
one can derive the number of rotation invariant circular
patterns corresponding to the CCR texture model:

5124+4+8+4+32+44+8+4)
8

Finally, it is convenient to recall that the constant
pattern formed by all 0’s is —by definition— impossible
in the ILBP model, and as a result the dimensionality of
the ILBP’, feature space is:

#{LBPg',} = = 36(3)

R, } = | -~

(511 4+3+7+3+31+3+7+3)
8

A side effect of the above described rotation-invariant
operators is an increase of the frequency of constant
patterns. If we consider, for instance, the texture Azul
Platino, the occurrence of such patterns represents 58.9%
and 8.4% of the CCR3x3 and LBP3y3 histograms, re-
spectively (Figs. 1(d) and 1(a)). In the case of the CCRg"
and LBPg’, these proportions rise to 67.0% and 10.4%,
respectively (Figs. 1(e) and 1(b)). We believe that such
a discrepancy between the basic and the rotation invari-
ant versions is due to the conversion of squared neigh-
bourhoods into circular neighbourhoods through bilin-
ear interpolation, that might convert a number of non-
constant square patterns into constant circular patterns.

The dimension of the feature space can be further re-
duced by introducing the concept of uniformity. A local
binary pattern is considered uniform when the number
of transitions in the circular bitwise presentation of the
LBP code is at most two [30]. The term refers to the
uniform appearance of such patterns, which arises from
the limited number of black-white or white-black tran-
sitions. Researchers at the University of Oulu, Finland,
found that the uniform patterns represent the vast ma-
jority of the 3x3 local binary patterns in surface textures
[33]. Although the use of uniform patterns provides the
beneficial advantage of a low-dimensional feature space,
recent results suggest that this approach has some sig-
nificant shortcomings, since it discards some important

#{ILBPg, } = = 71(5)
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Fig. 3 Texture rotation introduces a circular shift in each
subset of bins which represent rotationally-equivalent pat-
terns.
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texture information and it is sensitive to noise [53]. It
has also been reported that in those textures whose edges
and shapes are not regular (like granite texture) the dom-
inant patterns are not mainly the uniform ones [28,29],
and therefore it is recommendable, in such cases, to use
all the LBP patterns. Based on these considerations we
decided not to use uniform patterns in our experimental
activity.

3.2 Discrete Fourier Transform

The Discrete Fourier Transform is a common method to
obtain rotation invariant texture features. It can be vir-
tually applied to any feature space that holds the circular
shift property, that is: a rotation of the texture results
in a circular shift of the feature vector. This method
has been successfully used within many texture descrip-
tors, such as Gabor filters [21,6], Markov Random Fields
[10], ridgelet features [9], and Radon transform [52]. A
DFT-based approach for rotation invariant LBP features
has been recently presented in [1]. Unfortunately this
method computes rotation invariant features from the
histogram of uniform LBP patterns, which are not ade-
quate to the application studied in this paper, due to the
considerations presented in the previous section. There-
fore we adopted a generalization of the method presented
in [1], with the difference that rotation invariant features
are obtained through DFT normalization of the original
LBPg,; histogram. We also extend this method to the
other feature spaces considered, namely ILBP and CCR.
The approach is described below.

Let’s begin with the case of LBP. Let’s consider a cir-
cular binary pattern, its rotated versions, and the prob-
ability of occurrence of the pattern itself and its ro-
tated versions. We can observe that, as the texture ro-
tates by 45°, the corresponding histogram bins undergo
a circular shift by one position (Fig. 3). In formulas: if
xp = {x1, -, xzn} is the set of values of the probability
of occurrence of a pattern and its rotated versions at a
given texture angle 0, after a texture rotation by 45° this

set of bins becomes xg 450 = {xn,Z1, -, N_1}. AS a
consequence a rotation invariant version of the vector x
can be obtained by taking the discrete Fourier transform.
IfX = [Xo, X1,...,Xn_1]is the DFT of x, the moduli of
the transformed coefficients | X} | are independent of any
circular shift of the input vector x. In addition, know-
ing that the DFT output is half redundant, we get the
complete information by looking at the first [(N/2) + 1]
elements of the transformed vector [6], where [-] denotes
“integer part of”. In summary, the algorithm to obtain
the rotational invariant LBP involves the following op-
erations:

1. Compute the original LBPg ; histogram:
h={hy, -, hase} (6)

2. Remove the first and the last bins of the histogram
(they represent the all-black and all-white constant
patterns):

h' = {hg,- -, hass} (7)
3. Rearrange the resulting LBP histogram in blocks of

bins so that each block refers to rotationally-equivalent
patterns:
h' = {hy,- - hy} (8)
where, h; = {h;1, -, hiny} and M = 34. It should
be observed that this value results of borrowing 2
from Eq. 3. We can imagine each group of rotation
invariant patterns as formed by a basic pattern and
all its rotated versions. In addition, for the circular
shift property to be satisfied, we order each group
of bins which refers to a group of rotation invari-
ant patterns in such a way that if the h;; bin refers
to the basic pattern, the h;s bin refers to the pat-
tern obtained through a single rotation of 45° from
the basic pattern, and so on. In general each group
is composed of eight different rotationally-equivalent
patterns (therefore N = 8). But, as discussed in Sec-
tion 3.1, in some cases the number of different pat-
terns for group is less than eight. This occurs when a
rotated version of a pattern coincides with the un-
rotated version: if the basic pattern has the form
00010001, 00110011 or 01110111 then N = 4; if it
has the form 01010101 then N = 2.

4. Compute the DFT H; of each h; and retain only the
moduli of the first [(N/2) 4 1] elements of each H;.

5. Normalize the elements of each H; so that the energy
of the transformed coefficients equals the energy of
the original bin values:

ﬁi = CZ‘Hl‘

where

N
> hik
k=1

“ = N2+ (10)

> Hg
k=1
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6. Obtain the rotation invariant feature vector: H =

{H17”'aHM};

7. Add to the above feature vector the first and last ele-
ments of the histogram that were previously removed

in step (2).

The resulting feature space is denoted by LBPQ P
The method can be immediately extended to the CCR
and ILBP models if we consider that a CCR histogram
can be split into two LBP histograms: one that accounts
for all the texels whose central pixel value is 0, and the
other that accounts for all the texels whose central pixel
value is 1. The corresponding feature spaces are denoted
by ILBP{{™ and CCRE{”, respectively.

It is worth mentioning that the DFT-based method
can be considered as a generalization of the method based
on rotation invariant patterns, which has been presented
in section 3.1. This is motivated by the following obser-
vation: by only retaining the DC component of the DFT-
transformed bins we obtain the texture-based approach
based on rotationally invariant patterns.

4 Overview of the image acquisition set-up

The visual appearance of a particular granite strongly
depends on the surface roughness. Common finishes in-
clude sawn, flamed, bush-hammered, honed and polished,
which is the most extended one and dominates the mar-
ket. The usual procedure to obtain a polished finish in-
volves two operations: first, the granite slab is subject to
the action of a rotating disc impregnated with abrasive
powder, and second, the remaining pores and scratches
are sealed with polish wax. As a result of it, the full
colour and crystal structure of the stone become visible,
and the surface acquires a glossy appearance. This mirror
like finish is a major issue for a machine vision system.
To tackle the problem of specular reflections, special care
has to be taken in recording images. The stone surface
has to be optically shielded in order to avoid, on the one
hand, the influence of environmental light fluctuations,
and on the other hand, overlapping between the granite
texture and the reflected image of the scene in front of
the granite slab. In addition, completely diffuse illumina-
tion is required to ensure that light intensity is uniformly
distributed all over the field of view, and thus the image
is free of shadows and specular reflections.

The imaging system used to capture the granite im-
age data consists of a LED ring light mounted on the
base of an opaque, hemispherical dome of 46.5 cm di-
ameter (see Fig. 4(a)) whose inner wall is coated with
a material that approximates to the ideal Lambertian
scatterer. The light rays incident on any point of the
stone surface are, by multiple scattering reflections, dis-
tributed equally to all other such points, and therefore
provide even illumination on the granite slab. The dome
has a through hole on top which allows observation of the
specimen. Colour texture images were recorded using a

Fig. 4 (a) Illumination system inside the dome. (b) The
dome together with the support that makes it possible to
take images of the granite tiles at different rotation angles

consumer digital still camera (Samsung S850), which is
rigidly attached to the dome in order to keep constant
the distance from the camera to the stone surface, and
therefore the image scale, during the image acquisition
process. The dome is mounted on a special support (see
Fig. 4(b)) that makes it possible to change the relative
rotation between the camera and the granite tile to be
acquired. The mounting device supports the same set of
rotation angles used in [35]: 0°, 5°, 10°, 15°, 30°, 45°,
60°, 75° and 90°.

Moreover, in order to ensure that all the images were
recorded under the same conditions, we disabled the au-
tomatic gain control of the camera, and manually set
the resolution, the shutter speed, the f-stop and the ISO
to the following values: 1024x768, 1/30 s, 7.4 and 50,
respectively.
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Fig. 5 The dataset of granite textures used in the experi-
ments (unrotated images). From the top: Acquamarina, Azul
Capizaba, Bianco Cristal, Bianco Sardo, Rosa Beta, Azul
Platino, Giallo Ornamentale, Giallo Napoletano, Giallo Santa
Cecilia, Giallo Veneziano, Rosa Porrino A, Rosa Porrino B.

5 Assessment of robustness
5.1 Benchmark data

Experimental evaluation of texture classification accu-
racy has been performed over a set of 12 types of com-
mercial varieties of granite (Fig. 5), namely: Acquama-
rina, Azul Capizaba, Azul Platino, Bianco Cristal, Bianco
Sardo, Giallo Napoletano, Giallo Ornamentale, Giallo
Santa Cecilia, Giallo Veneziano, Rosa Beta, Rosa Porrirnio
A, Rosa Porririo B. The granite tiles comes from a stone
manufacturing company Mondial Marmi SpA (Perugia,
Ttaly). The overall dataset is composed of 48 images, 4
for each class. It should be noted that such granite classes
represent a challenging dataset, since many of them ex-
hibit similar visual characteristics.

The texture images were acquired under controlled
conditions using the system described in the preceding
section. To assess robustness against rotation we used
both hardware- and software-rotated images. Hardware-
rotated images have been acquired using all the rotation
angles provided by the mounting system, namely: 0°,
59, 10°, 15°, 30°, 45°, 60°, 75° and 90°. This results in
a database of 432 images (48 for each rotation angle).
Software-rotated images have been obtained by rotating
the 0° image by the same angles. Two approaches have
been used to image rotation by software: bilinear and
bicubic interpolation. In both cases we used the function
imrotate of the Matlab package. Finally, in considera-
tion of the fact that, as the granite surface rotates, only
the central part of the image captures the same portion
of the surface, we only retained the central part of the
original images. If W and H are the width and height of
the original image, the area to be retained is a centered
square the dimension of which is min(W, H)/v/2. This
gives an image size of 544 x 544 pixels.

5.2 Procedure

The index considered here to assess feature robustness
against rotation is the percentage of correctly classified
textures in a supervised learning task. The classification
experiments were based on the nearest neighbour rule
[11] with the L; norm, also called Manhattan distance.
Classification error has been evaluated by split-half vali-
dation with stratified sampling [8]. This means that the
dataset was randomly subdivided into two subsets, one
used for training (training set), and the other for testing
(validation set). Moreover, the proportion of examples of
each class in the training set is maintained the same to
avoid class biasing in the classification process. In order
to assess robustness against rotation, the training set is
always composed of textures picked from the 0° group,
while the validation set is composed of rotated versions
of textures taken from the @ degrees group, with 6 € {0°,
5°, 10°, 15°, 30°, 45°, 60°, 75°, 90°}. For each rotation
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angle we averaged the results obtained over 100 differ-
ent random partitions into training and validation set
to have a stable estimation of the generalization error.
To make things clearer, the per-unit version of the in-
dex we use to assess the classification accuracy obtained
for a texture rotation of 6 degrees can be formalized as
follows:

Ap 5
29
J=1

100

Ag = (11)
where Ap ; denotes the number of correct classifications
achieved for a rotation angle 8 by using the jth random
partition of the 48 images that compose the dataset, that
is to say, when the classifier is trained with 24 unrotated
images (2 samples per granite class) and the validation is
perfomed over the remaining 24 images (also 2 samples
per granite class) after being rotated by 0 degrees.

5.3 Experimental results and discussion

The results of the experimental activity are summarized
in Table 1. The table is organized as follows: the first
column reports the feature space, the second column the
dimension of the feature space, the third column the
method used to rotate textures; the columns from Ago
to Aggo the percentage of correct classification obtained
when the rotation angle of the textures of the valida-
tion set varies from 0° to 90°. Finally the column mean
reports the mean classification accuracy over the nine
rotation angles considered, and the column st_dev the
standard deviation of the accuracy over the nine rota-
tion angles.

In order to draw meaningful conclusions from the ex-
perimental activity, it is convenient to separately anal-
yse the results obtained with hardware-rotated images
and those obtained with software-rotated images. In the
first case we can conclude the following: the original (non

rotation-invariant) versions of the methods (namely: LBP3

ILBP3y«3, and CCRj3x3) are not invariant against ro-
tation, as one would expect. On the contrary all the

rotation-invariant versions of the analysed features proved

to be robust against rotation and they should theoreti-
cally return similar performance irrespective of the orien-
tation angle. However, it is useful to note that the CCD
or CMOS sensors are defined by an ordered structure of
either rectangular or square pixels. Since the pixels that
form the sensing element do not have circularly symmet-
ric shapes, small aliasing effects are inserted during the
image acquisition process if the image is rotated with
angles that are not orthogonal to the original position (0
degrees). Based on this observation, it is expected that
the classification errors peak when the images are rotated
by 45 degrees since the aliasing effects are maximised for
this orientation.

A different scenario emerges if we use software-rotated
textures. In this case the experimental results show that
not only the original versions of the methods are not ro-
bust against rotation, but also their rotation invariant
versions are not. At a first glance these results could ap-
pear somewhat surprising. However we have to consider
that rotation by software attenuates high frequency com-
ponents of the image [23], and therefore some informa-
tion is lost in the process. Such smoothing considerably
alters the intrinsic texture structure, since it wipes out
the micro-textural data. This observation is supported
by the experimental results depicted in Table 1, where it
can be observed that the classification results achieved
by the rotationally invariant descriptors (ri and DFT)
for 90 degrees synthetically rotated data closely match
the classification results obtained at 0 degrees. These re-
sults are motivated by the fact that no interpolation is
required for orthogonal rotations (90, 180 and 270 de-
grees), since the image rotation for these orientations
involves one-to-one pixel mapping. Fig. 7 gives an exam-
ple of the changes which may suffer a gray-scale pattern
when rotated by 5° through bilinear interpolation. As we
can see, even a small rotation angle can induce changes in
the corresponding local binary pattern, which are likely
to degrade the classification accuracy.

The last point worth commenting on is that experi-
mental results show that CCR3y3 model is more robust
against rotation than LBPj3.3, while the opposite holds
true for the rotation invariant versions of these descrip-
tors. We believe that the intrinsic robustness of the ba-
sic CCR3x3 is motivated by the conspicuous peaks lo-
cated at both extremes of the histogram (see Fig. 1(d)),
which indicate that the vast majority of the binary pat-
terns are constituted by all 0’s and all 1’s, i.e., are con-
stant patterns. This means that classification is strongly
dominated by the occurrence frequency of the constant
patterns, which is fairly independent of rotation. The

T4

use of rotation invariant versions, namely CCRg'; and
CCRETT, attenuates the relative weight of the constant
patterns on the overall histogram, and as a result of it,
the average performances of both LBP and CCR models
Become comparable.

6 Conclusions

In this work we evaluated the robustness against rota-
tion of the LBP, ILBP and CCR texture models in the
context of granite texture classification. Granite texture
is traditionally considered hard to classify, due to its
highly stochastic and irregular nature. To this end, we
carried out a large number of experiments using a dataset
of hardware- and software-rotated granite textures ac-
quired under controlled conditions. We assessed the ro-
bustness against rotation of LBP, ILBP and CCR fea-
tures, in their basic forms as well as their rotation invari-
ant versions. Rotation invariance has been obtained in
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Fig. 6 Plots of Ay (expressed in %) corresponding to hardware-rotated textures: (a) LBP, (b) ILBP and (c) CCR.

Table 1 Results of the experimental activity. Accuracies are expressed as percentages.

Feature space  Dim  Rotation Mean St.dev  Ago Ago Ajgo Ajgo Agzgo Aggo Aggo Aqgo Aggo
hardware 69,4 18,2 87,5 90,6 87,4 85,0 68,4 53,8 50,9 51,5 49,6

LBP3y3 256 bilinear 36,5 20,5 87,5 31,7 30,2 27,9 26,5 25,4 25,6 25,0 49,0
bicubic 44,7 17,9 87,5 46,5 472 44,0 38,6 30,8 30,9 28,1 49,0

_ hardware 80,7 1,8 80,6 84,2 79,8 80,2 79,0 78,7 82,2 79,2 82,1
LBP;, 36 bilinear 37,4 24,5 80,6 250 250 25,0 25,0 25,0 25,0 25,0 80,6
bicubic 41,5 22,2 80,6 29,0 28,9 28,9 31,7 31,9 33,0 28,9 80,6

hardware 88,5 4,3 93,1 94,0 91,8 90,3 85,6 81,5 85,9 84,1 90,0

LBPY{ " 163 bilinear 41,6 29,2 93,1 27,0 28,7 27,6 25,5 25,8 26,1 27,1 93,1
bicubic 56,8 20,7 93,1 45,0 45,3 45,5 45,2 46,5 48,5 48,7 93,1

hardware 74,8 16,4 93,9 92,6 91,0 86,7 75,2 58,5 58,2 59,0 58,5

ILBP;sy 3 511 bilinear 48,7 18,9 93,9 48,5 48,9 45,0 38,4 39,4 34,8 30,7 58,4
bicubic 60,3 15,8 93,9 69,2 67,4 63,1 55,7 47,5 45,3 42,5 58,4

_ hardware 92,4 1,8 92,1 93,7 92,7 94,0 91,5 88,5 91,8 92,5 94,9
ILBP, 71 bilinear 51,3 23,2 92,1 38,7 392 40,0 39,3 41,7 39,8 38,8 92,1
bicubic 59,0 18,8 92,1 47,1 47,9 48,5 51,7 51,2 51,3 49,3 92,1

hardware 94,7 3,9 97,4 98,6 96,0 96,8 89,7 87,3 92,8 96,9 97,2

ILBP. " 325 bilinear 58,9 22,0 97,4 49,0 50,5 50,7 44,0 42,5 47,9 51,0 97,4
bicubic 72,1 15,5 97,4 70,7 70,3 69,1 59,3 54,1 61,0 69,5 97,4

hardware 79,7 9,6 88,8 87,6 89,3 88,1 84,8 69,3 70,0 70,3 69,5

CCR3x3 512 bilinear 48,2 17,6 88,8 43,0 44,2 43,6 43,0 40,0 34,7 32,5 63,7
bicubic 68,5 12,6 88,8 752 778 77,1 71,7 55,6 53,9 53,1 63,7

, hardware 81,5 2,5 79,6 78,8 81,0 81,6 85,8 79,5 85,2 81,1 80,6
CCRY}, 72 bilinear 50,4 16,6 79,6 41,4 43,6 43,9 43,4 41,1 40,8 39,9 79,6
bicubic 66,6 7,6 79,6 61,3 60,0 64,1 64,6 62,5 66,4 61,4 79,6

hardware 86,3 1,7 88,0 857 85,5 86,1 87,4 82,6 86,9 87,9 87,0

CCRYT™ 326 bilinear 53,2 19,7 88,0 42,3 44,0 44,3 44,2 42,4 42,5 43,2 88,0
bicubic 75,3 7,8 88,0 72,0 73,2 72,3 71,7 69,3 73,0 70,6 88,0

two different ways: through rotation invariant patterns,
as proposed in [31], and through the Discrete Fourier
Transform. We provided a description of this new method
in section 3.2.

Among the three texture models, the ILBP provided
significantly higher results, whereas the performances ob-
tained with the LBP and the CCR are comparable. The
analysis of robustness against rotation generated differ-
ent outcomes, depending on the method used to rotate
the images. With hardware-rotated images the rotation
invariant methods show good robustness against rota-
tion. A comparison of the two approaches shows that
the DFT performs better. This result is logical, since this
method can be considered an extension of the approach

based on rotationally invariant patterns. On the contrary
the robustness against rotation is poor when considering
software-rotated images. We gave an explanation of this
result in the previous section. This suggests that exper-
imental results obtained using software-rotated images
should be carefully considered, since they may lead to
misleading conclusions.
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