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We present an overview of methods and applications of automatic characterization of the appearance of materials through colour
and texture analysis. We propose a taxonomy based on three classes of methods (spectral, spatial, and hybrid) and discuss their
general advantages and disadvantages. For each class we present a set of methods that are computationally cheap and easy to
implement and that was proved to be reliable in many applications. We put these methods in the context of typical industrial
environments and provide examples of their application in the following tasks: surface grading, surface inspection, and content-
based image retrieval. We emphasize the potential benefits that would come from a wide implementation of these methods, such
as better product quality, new services, and higher customer satisfaction.

1. Introduction

Computer vision has been a topic of intense research activity
for decades. The wide availability of imaging devices, as
well as the continuously increasing computing power, has
contributed to the development of successful applications in
many areas: remote sensing, computer-aided diagnosis, auto-
matic surveillance, crowd monitoring, and food control are
just some examples [1]. Manufacturing is also an important
sector that benefits from computer vision methods: robotics
[2], process automation [3], and quality control [4] are typical
applications in this context. Most of these applications share
the same underlying problem: the automatic characterization
of the visual appearance of the materials that one has to deal
with in the various domains.

This is particularly true for products with high aesthetic
value [5, 6], such as natural stone [7], ceramic [8], parquet
[9], and fabric [10, 11], to cite some. In such cases it is the
visual appearance itself that largely determines the quality—
therefore the price—of the material. The measurement of
visual appearance can be considered a part of “soft metrol-
ogy,” the aim of which is the objective quantification of

the properties of materials that are determined by sensorial
human response. In an increasingly competitive worldwide
market, reliable and effective assessment of this feature is a
key point to ensure high quality standard and the success of
a company.

Traditionally, the analysis of the visual appearance
has been accomplished by skilled operators. This is a
lengthy, tedious, scarcely reproducible, and largely subjective
approach [12]. To overcome these issues many companies
are abandoning manual procedures and moving towards
automated computer vision systems, which in principle
provide higher quality standards, better reproducibility, and
more reliable product records. These systems employ image
processing techniques to encode the visual appearance of a
particular product through the analysis of two main visual
features, namely, colour and texture, even though other
characteristics such as contrast and gloss can be considered
as well [5].

Intuitively, colour and texture provide most of the infor-
mation that we need to infer the material an object is
composed of, as well as to distinguish one material from
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another. Neuroimaging research has in fact confirmed this
common belief [13]. Colour is the result of the interaction
of three elements [14]: an intrinsic characteristic of the
material (reflectance spectrum), an accidental condition
(illumination), and the response of the sensor (human eye or
camera). Texture, a more elusive concept, has been defined
in many ways, though none of the definitions given so far is
entirely satisfactory. Herein we will mention the definition
given by Davies [15], according to whom texture is “the
property of a surface that gives rise to the local variability
in appearance,” where such variability may be either an
intrinsic characteristic of the material or the consequence of
surface roughness. The concept of stationary texture, which
means that the statistical characteristics of the texture are the
same everywhere [16], is also useful in this context. In the
remainder of the paper we implicitly assume that when we
use the word texture we refer to a stationary texture.

Wepresent in this paper an overviewof colour and texture
analysis methods along with their applications in industry.
The remainder of the manuscript is organized as follows.
Section 2 gives an up-to-date overview of the methods for
automatic characterization of the visual appearance and
proposes a taxonomy to group them in a meaningful way.
Particular attention is given to robustness against noise
factors, such as variations in illumination and viewpoint.
Section 3 deals with the main applications in industry, with
particular emphasis on grading, surface inspection, and
content-based image retrieval (CBIR). Concluding remarks
are reported in Section 4, along with a discussion on future
research directions and potentially innovative applications.

2. Methods

Originally, approaches to automatic characterization of the
visual appearance of materials considered colour and texture
separately. In the last decade, however, an increasing interest
has been devoted to integrating these two sources of data into
a unifying model. Strong evidence has in fact supported this
idea and confirmed that incorporating colour into the texture
model has beneficial effects in many applications [17, 18].The
classification scheme that we propose in this paper reflects
this idea, namely, that themethods can be based on one of the
two features separately (either colour or texture) or consider
the two of them jointly.

Based on these considerations itmakes sense to define the
following three main categories: spectral, spatial, and hybrid
methods [19]. The first group is based on colour only: the
relative spatial distribution of the pixel values is not taken into
account. The second group encloses texture-based methods:
they are called spatial methods since they take into account
the relative variation of pixel intensity (grayscale values) in
the spatial domain, but discards colour altogether (images are
previously converted into grayscale). Finally, those methods
that consider colour and texture jointly are referred to as
hybrid methods. Before describing the three groups in detail,
we will first discuss three points that apply to each method in
general; these are dimensionality, robustness to noise factors,
and parameter tuning.

Dimensionality refers to the number of parameters a
method relies upon. Whichever the approach we use to
characterize the visual appearance of a material, this will be
represented through a finite set of quantitative parameters,
which are usually referred to as the feature vector.The appear-
ance of a material can therefore be regarded as a point in an
𝑛-dimensional space, where 𝑛 is the number of parameters.
Ideally, a good method should provide high discrimination
accuracy with as few parameters as possible. Computation, in
fact, becomes costly as dimensionality increases, representing
a serious limitation for applications that require real-time
processing. Furthermore, long feature vectors are likely to
degrade the performance of a classifier, as a consequence of
the well-known phenomenon of “curse of dimensionality”
[20].

Noise factors represent uncontrollable sources of uncer-
tainty that commonly occur in nonideal conditions. In
real working environments it can be quite complicated to
maintain steady and controlled imaging conditions. Most
commonly one has to deal with variable conditions, such as
changes in rotation, scale, illumination, and so forth. It can be
quite difficult to compensate for such sources of noise. Some
of them are likely to degrade the performance of a method
so strongly as to make it virtually useless. To illustrate this
concept Figure 1 shows how the appearance of a material can
be affected when exposed to different sources of noise.

The effects of changes in illumination are reported in
Figures 1(a) and 1(b). Changes in translation, scale, rotation,
and/or viewpoint are shown in Figures 1(c), 1(d), 1(e), and
1(f). As we discuss in the following subsections, each class
of methods is sensitive to one or more sources of noise. It
is therefore the designer’s responsibility to select the method
which is most appropriate to the specific application domain,
considering the potential noise factors that can arise in their
specific context.

Finally, it is important to mention that virtually any
spectral, spatial, or hybrid image descriptor depends on
one or more parameters—see Table 1 for a roundup of the
methods presented here and their parameters. In any specific
application, the performance of a method may vary greatly
depending on the setup of such parameters.When it comes to
implementing industrial systems, it is advisable to stick to the
values suggested in the literature as a first step; then, to further
improve the results, it is possible to optimise the parameters’
values in a supervised fashion, adaptive to thematerial, to the
image kind, but also to the experience of the user.

In the following subsections we analyse spectral, spatial,
and hybrid approaches to colour texture analysis and discuss
their pros and cons. For each class we present a set of
representativemethods and their use in three different indus-
trial applications: grading, surface inspection, and CBIR. In
Table 2 we summarise the robustness of each method to
different noise factors (i.e., changes in illumination inten-
sity, viewpoint, rotation, and scale) and report a qualitative
appraisal of the computational time. The methods included
in the experiments have been selected on the basis of
classification accuracy, computational efficiency, and easiness
of implementation.
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Figure 1: (a) Frontal view of a covered board and its appearance under noise factors such as changes in (b) illumination, (c) translation,
(d) scale, (e) rotation, and (f) viewpoint.

Table 1: Method and related parameters.

Class Method Parameters

Spectral

R, G, B, means None
Colour histogram Number of quantization levels

Chromaticity moments Number of quantization levels.
Colour centiles Number of percentiles

Spatial

GLCM Distance, co-occurrence directions
LBPri Radius, number of pixels
CCRri Radius, number of pixels, and thresholding method

Gabor filters
Number of frequencies, number of orientations, maximum
frequency, width and length of the Gaussian envelope, and

frequency ratio

Hybrid

OCLBPri Radius, number of pixels
Integrative CM Distance, co-occurrence directions

Ranklets Radius, number of pixels
LBPri + colour centiles Radius, number of pixels, and number of percentiles

2.1. Spectral Methods. Spectral methods consider the colour
content of the image regardless of its spatial distribution.
This is usually represented through RGB triplets, since this
is the format used by most imaging devices. Hyperspectral
imaging is also gaining importance in practical applications:
for a review ofmethods the interested reader is referred to the
work of Chang [21]. Herein we limit our discussion to the tra-
ditional and well-established domain of trichromatic images.
It is worth recalling, at this point, some basic facts about
colour spaces. We know that they can be device-independent
(colorimetric) or device-dependent. The first group includes
any colour space that can be converted into XYZ without
additional information. In principle device-independent data
are absolute values that do not depend on the imaging
system. They also carry information about the illuminant
under which the measurement is taken (e.g., D65, D50,
etc.). In contrast, device-dependent colour spaces encode

device-specific data. Consequently colour data acquired with
two different devices are unrelated, and no information is
conveyed about the illuminant.

The problem of choosing the best colour space for visual
similarity has been debated at length in the literature [18,
22, 23]. As for robustness against changes in illumination,
it is clear that, in principle, device-independent data are the
best option. The problem, however, is that standard imaging
devices do not provide this kind of data—which need to
be estimated through calibration. Regarding accuracy, it has
been suggested that linear spaces (e.g., CIE Lab) should
provide the best results, for distance in these spaces correlates
with dissimilarity in the human vision system. Experimental
results, however, have not confirmed this hypothesis; they
report, on the contrary, rather inconclusive and fairly con-
tradictory results [24, 25].
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Table 2: Robustness to noise factors and computing time. A tick indicates that the method is robust to the corresponding noise factor. Low,
medium, and high computing time are indicated as ∙, ∙∙, and ∙ ∙ ∙, respectively.

Class Method
Noise factor

Computing timeChange in
illumination intensity

View point
change Rotation Scale

Spectral

R, G, B, means ✓ ✓ ✓ ∙

Colour histogram ✓ ✓ ✓ ∙∙

Chromaticity moments ✓ ✓ ✓ ∙∙

Colour centiles ✓ ✓ ✓ ∙

Spatial

GLCM ✓ ✓ ∙∙

LBPri
8,1 ✓ ✓ ∙

CCRri
8,1 ✓ ∙∙

Gabor filters ✓ ∙∙

Hybrid

OCLBPri
8,1 ✓ ✓ ∙∙

Integrative CM ✓ ∙∙

Ranklets ✓ ✓ ∙ ∙ ∙

LBPri
8,1 + colour centiles ✓ ∙

We subdivide spectral methods into two subgroups:
methods based on colour statistics and methods based on
colour histograms. The methods of the first group consider
various combinations of global statistical parameters (such
as mean value, standard deviation, median, etc.) which are
computed directly from the colour data. These are also
referred to as soft colour descriptors [26]. Within this group
it has been shown that parameters as simple as the average
values of each R, G, and B channel can discriminate quite
well among different materials. Kukkonen et al. [8] reported
a successful application of this method in surface grading
of ceramic tiles. In the same domain of application, López
et al. [26] proved the effectiveness of various combinations of
soft colour descriptors such as mean, standard deviation, and
moments. Niskanen et al. proposed the use of colour centiles
(values that divide the cumulative probability distribution of
each colour channel into the percentage required) for defect
detection in parquet slabs [27].

The second group is based on the concept of colour his-
togram.This is an approximated estimation of the probability
of occurrence of each colour in an image. The number of
components of the colour histogram is determined through
a suitable quantization of the colour space. The progenitor
of this group is the 3D colour histogram [28]. This is
obtained by dividing the colour space into cells of equal
volume. This method is still valid today but presents the
disadvantage of a high dimensionality. Modified versions
have been proposed with the aim of avoiding this problem.
Among these it is worth mentioning Paschos’ chromaticity
moments [22], which discard the intensity channel and
consider the two-dimensional histogram arising from the
two chromatic channels only. The colour images are first
converted into the 𝑥𝑦𝑌 space—a process which requires
colour calibration—and then the Y (intensity) channel is
discarded. The resulting two-dimensional distribution over
the 𝑥𝑦 plane is characterized through a set of moments.

We conclude this subsection with some remarks about
spectral methods as a whole. It is important to point out
that, due to the fact that this family of techniques considers
the colour content of the image regardless of the spatial
distribution, any spatial information is lost. A positive out-
come of that is a fairly good robustness against translation,
rotation and changes of the viewing angle (see Table 2).
A negative one is that dissimilar images may have similar
colour distributions, and therefore these methods can fail in
some cases. To illustrate this concept, we captured an image
of a granite slab (Figure 2(a)) and rearranged the spatial
distribution of the pixels (Figure 2(b)). Both images have
exactly the same colour content, but their appearance is quite
different.

In summary, spectral methods are highly recommended
in presence of steady illumination conditions. In such situa-
tions they can compensate very well for changes in viewpoint
illumination and scale. By contrast, they should be avoided
when illumination conditions are variable or unknown.
For quantitative performance analyses on spectral methods
applied to wood and ceramics the interested reader may find
useful data in [8, 9, 24, 26].

2.2. Spatial Methods. Spatial methods are based on pure
texture. They capture the visual appearance of a material
through features extracted from grayscale images, therefore
discarding colour information. Research on this area has been
intense for many years. Various attempts to categorize the
methods of this group have been proposed in the past [29–
31]. Such classification schemes, however, have proved rather
unsatisfactory, due to the high degree of overlap that exists
among many methods. In an effort to solve this problem, Xie
and Mirmehdi have recently proposed a fuzzy categorization
[32]. In their scheme a method can belong to one or more of
the following four classes: statistical, structural, model-based,
and signal processing-based. Statistical approaches consider
the spatial distribution of pixel values. Structural methods
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(a) (b)

Figure 2: (a) Image of a granite slab. (b) Synthetically generated image obtained by rearranging the pixels of image (a).

describe textures in terms of the spatial arrangement of
certain elementary patterns, which are usually referred to
as texels or textons. Model-based methods characterize the
texture through a set of parameters of a predefined mathe-
matical model. Finally the signal processing-based methods
typically employ a bank of filters to analyse texture at different
frequencies and orientations. Herein we selected four classic
methods that are easy to implement and proved to be effective
in many applications: gray level co-occurrence matrices,
local binary patterns, coordinated clusters representation,
and Gabor filters.

Gray level co-occurrence matrices (GLCM) are among
the most common texture descriptors [33]. They are also
important from a historical perspective, as they are one of
the methods that pioneered texture analysis. This approach
belongs to the statistical group. It is based on the bidi-
mensional joint probability of the grayscale values of pairs
of pixels separated by a predefined displacement vector.
Each displacement generates one co-occurrencematrix, from
which a set of statistical parameters are computed. Herein
we considered the following: contrast, correlation, energy,
entropy, and homogeneity. Most commonly the set of dis-
placements includes one-pixel shifts along four directions:
0∘, 45∘, 90∘, and 135∘. This is the setting adopted in our
implementation.The matrices corresponding to the four dis-
placements are averaged for rotation-invariance. Invariance
to illumination changes can be obtained by using statistical
parameters that are invariant to illumination intensity, such
as energy, entropy, contrast, correlation, and homogeneity.

Local binary patterns (LBP) [34] and coordinated clusters
representation (CCR) [35] are both statistical and struc-
tural. They characterize textures through the probability of
occurrence of certain elemental patterns that can occur in
a neighbourhood of predefined shape and size. Experiments
have shown that good results can be obtained using a
neighbourhood as small as a 3 × 3 window. Both LBP and
CCR consider the probability of occurrence of the binary
patterns that result from each position of the neighbourhood
as it slides by one-pixel steps along the image. Binarization
is based on thresholding: this is local in the case of LBP
(threshold is the value of the central pixel) and global in the
case of CCR (threshold is computed from the whole image
through isentropic partition of the grayscale histogram).This
gives 28 and 29 possible binary patterns in the two cases (LBP
and CCR, resp.). Rotationally invariant versions of the two

methods can be easily obtained considering an interpolated
circular neighbourhood [34]. These two versions—which are
the ones used herein—are referred to in the literature as
LBPri
8.1

and CCRri
8.1

[36].
Gabor filters [37] have played a significant role in texture

analysis and are ubiquitous in many applications. The reason
for the success of the method perhaps lies in its capability of
mimicking the human vision system [38]. The approach is
based on multichannel, frequency- and orientation-selective
analysis of the image. The implementation therefore consists
in designing a bank of filters and selecting a proper set of
parameters for each filter [39]. Texture features are typically
the mean and the standard deviation of the absolute value of
the transformed images. Invariance against rotation can be
easily achieved through DFT normalization.

Compared with spectral methods, spatial methods show
rather opposed characteristics. Whereas the former are
invariant against changes in rotation, viewpoint, and scale,
the latter are not. They are, in fact, quite sensitive to changes
in viewpoint, scale, and rotation. Invariance against rotation
can be easily introduced in some spatial methods (the
methods considered herein are all rotationally invariant), but
invariance to viewpoint and scale is much more difficult to
achieve. In contrast, whereas spectral methods are scarcely
resilient to illumination changes, structural methods are
more robust in this sense. Some of them are intrinsically
invariant to changes in illumination intensity (e.g., LBP);
in the others a change in illumination intensity can be
easily compensated for. In summary, spatial methods are
recommendable when we are interested in discriminating
materials’ appearance on the basis of local changes, that is,
texture. Hence they are appealing for those materials with a
clear local structure, such as woven fabric, wood, granite, and
so forth; by contrast they are scarcely descriptive of materials
with “flat” appearance.Operating conditions can tolerate only
slight changes in viewpoint and scale, whereas changes in
illumination intensity and rotation are acceptable when the
proper methods are used (see Table 2).

2.3. Hybrid Methods. In an attempt to exploit structural and
spectral information jointly, researchers have devoted sig-
nificant attention to the development of combined (hybrid)
methods. Experiments have in fact confirmed that combined
approaches can provide better performance when compared
with methods that consider texture and colour separately
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[18]. Approaches that consider the two sources of data can
rely on one of the following strategies: considering colour
and texture separately and concatenating the resulting feature
vector; extracting texture features from each colour channel
separately (intra-channel features); and extracting texture
features from couples of feature channels (inter-channel
features). There is no general consensus, at present, about
which of these strategies is the best [26]. In this subsection we
report four methods that have proved reliable and effective in
a number of applications: Integrative co-occurrencematrices,
opponent colour local binary patterns, colour ranklets, and
local binary patterns + colour percentiles.

GCLM can be easily extended to colour images consid-
ering both the co-occurrence probability within one colour
channel (intra-channel features) and between couples of
colour channels (inter-channel features). The latter are usu-
ally extracted from R-G, R-B, and G-B couples, as proposed
in the implementation of Palm [40]. Texture features are
extracted as in GCLM. The method is usually referred to as
Integrative co-occurrence matrices (integrative CM).

Local binary patterns have also been extended to colour
images in a similarway.Themethod is referred to as opponent
colour local binary patterns (OCLBP). In this model intra-
channel features are obtained by applying the LBP operator to
each channel separately. Inter-channel features are computed
for pairs of colour channels (i.e., R-G, R-B, andG-B) by taking
the neighbourhood from one channel and the threshold from
the other channel [41]. The method considered herein makes
use of the rotationally invariant version of LBP LBPri

8.1

and
and is therefore indicated as OCLBPri

8,1

.
In a similar way ranklets, a nonparametric local measure

of relative intensity based on the ranklet transform, have been
extended to colour textures by taking both intra- and inter-
channel features in the RGB space [42]. Since both colour
ranklets and OCLBPri are based on relative differences or
ratios between colour values in the R, G, and B channels,
they are theoretically invariant to changes in illumination
intensity.

Finally we mention an approach where texture and
colour are computed separately and the resulting features are
merged. This method considers LBPri

8.1

as texture descriptor
and colour centiles as colour descriptors. Successful applica-
tions of this method have been reported in surface detection
of parquet slabs [27].

In Sections 2.1 and 2.2 we have set into evidence that
spectral and spatial methods capture different and comple-
mentary aspects of materials’ appearance: spectral methods
are able to discriminate among material with similar texture
but different colour, whereas spatial methods can distinguish
between similar colours and different textures. It makes
therefore sense to combine the two concepts into joint
descriptors. However, it has been pointed out that the gain
in accuracy that one obtains with hybrid methods pairs with
a significant loss in robustness [43]. In fact, whereas spectral
and spatial methods alone have some interesting invariance
features, which have been mentioned in the preceding sub-
sections, these are lost on hybrid methods (see Table 2).
Any type of change in illumination, viewpoint, rotation, and

scale can in principle affect these methods and result in a
significant loss of performance. Quantitative performance
analyses of hybrid methods applied to granite and wood can
be found in [7, 27].

3. Industrial Applications

Automatic characterization of the visual appearance of mate-
rials has many interesting applications in industry. In this
paper we are particularly concerned with the following main
classes of problems: grading, surface inspection, and content-
based image retrieval. The aim of this section is to provide
the reader with a description of these scenarios, as well
as to present practical examples of application in the three
contexts.

Grading is a process where products are grouped into
lots based on the criterion of “similar appearance” [24].
This means deciding which category or grade (among a
set of predefined classes) each material belongs to [30].
Grading applications are related to stages of the supply chain
such as ordering, delivering, and warehousing. This process
implies two major steps: (1) extraction of visual features
and (2) assignment of labels. In the preceding section we
presented a set of methods that can be used in the first
step. The second step is usually referred to as a classification
problem, which can be either supervised or unsupervised.
It is beyond the scope of this paper to describe in detail
these concepts and related methods. The interested reader
will find a comprehensive reference in the classic text of Duda
et al. [20]. In practical applications supervised classification
consists in assigning a class label to a product among a set of
predefined classes, each possible class being represented by
one or more training samples. In contrast, in unsupervised
classification we are given a set of products to be grouped into
a predefined number of classes, but no training samples are
given in this case. Unsupervised classification is also referred
to as clustering.

Surface inspection is concerned with the detection of
visible surface defects such as stains, cracks, veins, knots,
and so forth. An interesting and up-to-date review of recent
advances in this field can be found in [44]. Surface inspec-
tion is based on image segmentation, a process where an
image of the material under control is split into regions
with homogeneous visual properties. Segmentation has been
extensively studied by the computer vision community, and
many approaches are described in the literature. They range
from simple pixel-by-pixel classification to more involved
methods, such as region growing.

Content-based image retrieval is the process of searching
large datasets based on visual content, rather than metadata
such as keywords, tags, and so forth. For a review of methods
readers may find the work of Vassilieva useful [45]. Potential
applications of CBIR in industry are appealing, though not
completely exploited so far. An interesting use, for instance, is
in the problem of finding thematerial that is most similar to a
query sample.We can imagine, for example, a situationwhere
a customer needs to replace some broken pieces of granite,
ceramics, and so forth or has to enlarge a façade or floor
which has previously been covered with material of a certain
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Table 3: Results of the grading experiment.

Class Method Dimension Database
Wood Ceramic Textile Granite

Spectral

R, G, B, means 3 94.6 85.3 99.3 89.0
Colour histogram 2048 94.8 84.6 99.4 95.4

Chromaticity moments 6 88.7 79.5 100.0 91.8
Colour centiles 15 98.2 87.0 99.2 89.2

Spatial

GLCM 5 54.8 46.6 70.2 59.5
LBPri

8,1 36 96.4 84.0 94.5 80.6
CCRri

8,1 72 84.4 69.8 89.4 79.6
Gabor filters 32 99.1 81.8 90.6 95.6

Hybrid

OCLBPri
8,1 216 98.0 87.6 100.0 96.2

Integrative CM 30 76.7 74.8 91.5 85.7
Ranklets 216 98.9 85.8 100.0 97.5

LBPri
8,1 + colour centiles 55 98.4 89.2 100.0 93.6

(a) Wood database (b) Textile database

(c) Ceramic database (d) Granite database

Figure 3: Image databases.

type. In such cases the customer will request a material
“similar to” his (the query sample). A CBIR system—perhaps
distributed over a network of potential providers—would be
of great help in such a case and would foster cooperation
among companies in a global marketplace.

3.1. Grading. In this section we present an example of
surface grading applied to four different types of indus-
trial materials: wood, ceramics, textile, and granite. The
first three databases (Figures 3(a), 3(b), and 3(c)) are
composed of 30 classes each—one image per class. The
images have been picked from a public internet reposi-
tory (http://www.archibaseplanet.com), and the resolution
is 400 × 400 pixels. In order to get more examples of each
material, the images have been subdivided into four nonover-
lapping subimages. The fourth dataset (Figure 3(d)) contains
12 granite classes, with four images for each class.The granite
images (http://dismac.dii.unipg.it/mm) have been acquired
in our laboratory under controlled illumination conditions
using an illuminator (Monster DOME Light 18.25) and a
digital camera (Samsung S850). Image resolution is 544×544
pixels and no further subdivision is performed in this case.

To assess the performance of the descriptors presented in
Section 2, we carried out a supervised classification experi-
ment. First, each dataset is randomly split into two subsets:

one for training (training set) and the other for classification
(validation set). The subdivision guarantees that half of the
images of each class are used for training and half for
validation (this procedure is known as stratified sampling).
Second, each image of the validation set is classified through
the nearest neighbour rule (1-NN) and 𝐿

1
distance [20].

Finally, classification accuracy is estimated as the percent-
age of images of the validation set that have been classified
correctly. To make the results stable, the subdivision into
training and validation set is repeated 100 times and the final
accuracy is the average value over the 100 problems. The
general expression to compute the classification accuracy is

𝑎 =

1

𝑃

𝑃

∑

𝑝=1

𝐶
𝑝

𝑉
𝑝

, (1)

where 𝑎 is the classification accuracy, 𝑃 the total number of
problems (𝑃 = 100, in this case), 𝐶

𝑝
the number of correctly

classified samples, and 𝑉
𝑝
the number of the validation

samples in the 𝑝th problem.
The results of the experiments are summarized in Table 3.

The first two columns report the class and name of each
method, the third column the dimension of the feature space,
and the following columns the average accuracy over the four
datasets.
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Original image Ground truth

Spectral Spatial Hybrid 

Segmentation based 
on R, G, B values

Segmentation Segmentation 

Fabric

Paper

Wood

colour centiles

A = 98.91% A = 98.65% A = 99.26%

A = 95.32% A = 98.56% A = 97.96%

A = 99.29% A = 95.30% A = 97.84%

based on based on +LBPri
8,1

LBPri
8,1

Figure 4: Results of the surface inspection experiment.

In general the results are fairly good and confirm the
effectiveness of the considered methods for grading. Among
the spatial methods, LBPri

8,1

and Gabor filters show the best
accuracy. Spectral methods perform quite well too: it is worth
mentioning that a method as simple as the mean values of
each R, G, and B channel provides rather a good accuracy.
Hybrid methods, on average, are the most effective, as one
would expect.

3.2. Surface Inspection. In this section we describe a typical
surface inspection task consisting of detecting defective areas
on the inspected surface.Three images of defective specimens
of fabric, paper, and wood (see Figure 4) have been acquired
in our laboratory under controlled illumination conditions
using the setup described in Section 3.1.The task is about seg-
menting the image into defective and non-defective zones. In
the experiment we avoided complicated segmentingmethods
such as region growing or morphological analysis and stuck
to the simple and easy-to-implement per pixel classification.
We considered one method for each of the spectral, spatial,
and hybrid groups presented in Section 2, namely, R, G, and
B values, LBPri

8,1

and LBPri
8,1

+ colour centiles. Segmentation
has been performed through supervised classification based
on the Näıve Bayes algorithm [20] with a normal probability
density kernel. For each specimen approximately 5% of the
whole area have been used for training and the remaining
95% for validation. The “true” position and extension of the

defects (ground truth) have been manually determined by
human experts.

As a measure of accuracy, we considered the sum of the
percentage of foreground pixels (i.e., defective areas) cor-
rectly classified as foreground and that of background pixels
(i.e., non-defective areas) correctly classified as background.
This parameter gives an overall estimate of the effectiveness
of the segmentation process. In formulas we have

𝐴 =





𝐵 ∩ 𝐵
𝑇






|𝐼|

+





𝐹 ∩ 𝐹
𝑇






|𝐼|

, (2)

where 𝐴 is the overall accuracy; 𝐼 the whole image; 𝐵 and 𝐹
the background and foreground produced by the automatic
segmentation procedure; 𝐵

𝑇
and 𝐹

𝑇
the “true” background.

The segmentation results are summarised in Figure 4. The
results show that, for each problem, there is at least one
method that produces good segmentation results, with 𝐴 >
98, 5%. Conversely, not all the methods perform well in each
problem, suggesting that the selection of the right descriptor
is a domain-specific problem which needs to be considered
with extreme care. Note that the results presented in Figure 4
could be further enhanced through some morphological
postprocessing steps, such as region growing, morphological
filtering, and so forth.

3.3. Content-Based Image Retrieval. Finally we present an
application of content-based image retrieval. To illustrate this
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(a) (b)

Figure 5: (a) User interface for inserting new images in the database. (b) User interface image retrieval.

Figure 6: Database of 30 types of wood used in the retrieval
experiment.

application we use a prototype software developed by the
authors (Figure 5).

In the example presented in this section we considered
different types of wood (parquet). The first step consists in
creating a database of wood images. In this phase the user
selects a set of images and uploads each image to the database.
When an image is uploaded by the user (Figure 5(a)) the
system computes the visual characteristics of the image using
the descriptors discussed in Section 2 (the user can choose
one ormore).The visual characteristics are then storedwithin
the image.This process could be made automatically through
an appropriate online acquisition and recording system. In
the example shown in this section we created a database of 30
types of wood (see Figure 6).

Once the database is created, the user can insert a query
image and perform content-based retrieval. In this stage the
user selects the visual characteristic that he wants to use for
the retrieval and the distance type. The system presents the
user with the four most similar images in the database, in
descending similarity order from left to right (Figure 5(b)).
The results of a retrieval experiment are reported in Figure 7.
Here we have a query image on the left and the retrieved
images on the right. Each row corresponds to a different
descriptor.

It is interesting to comment on the result provided
by the three methods. First, notice that the query image

presents a slight texture formed by approximately vertical
lines. We can see that the first three images retrieved
through LBPri

8,1

actually present a texture very similar to
that of the query image’s, as one would expect. On the
other hand, the first two images returned by colour centiles
are very similar, in colour, to the query image, but have
very little texture. Finally, the combination of LBPri

8,1

and
colour centiles provides a balanced result between colour and
texture.

4. Conclusions

In this paper we presented an overview of methods for auto-
matic characterization of the visual appearance of materials
and illustrated a set of applications in industry. The aim of
the paper was to provide both researchers and practitioners
with a survey of methods and applications in an area where
research interest is currently high. The implementation of
the methods presented in this paper may, in fact, lead to
better products as well as new services. This is particularly
interesting for products where visual appearance plays a
crucial role: marble, granite, ceramic, parquet, leather, fab-
ric, and paper are just some examples. In an increasingly
competitive global market, effective measurement, recording
and retrieval of visual features are key points to ensure
high quality standards. The benefits expected from a wider
adoption of these methods include better product quality,
fewer faulty products, and higher customer satisfaction. In
the near future emerging techniques, such as RFID, are
likely to play an important role in this context. It is easy
to imagine a scenario where the visual characteristics of a
product are stored together with the product in RFID tags
in some sort of product identity card. This would bring
significant improvement to warehouse management and the
supply chain.
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