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a b s t r a c t

In this paper we consider the problem of colour-based sorting hardwood parquet slabs into lots of similar
visual appearance. As a basis for the development of an expert system to perform this task, we experi-
mentally investigate and compare the performance of various colour descriptors (i.e.: soft descriptors,
percentiles, marginal histograms and 3D histogram), and colour spaces (i.e.: RGB, HSV and CIE Lab).
The results show that simple and compact colour descriptors, such as the mean of each colour channel,
are as accurate as more complicated features. Likewise, we found no statistically significant difference in
the accuracy attainable through the colour spaces considered in the paper. Our experiments also show
that most methods are fast enough for real-time processing. The results suggest the use of simple statis-
tical descriptors along with RGB data as the best practice to approach the problem.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Wood is a widely used and greatly appreciated material. Count-
less are its applications in various industrial sectors including con-
struction, interiors, furniture and shipbuilding. Like other products
such as natural stone, ceramics, leather and similar, wood is mostly
appreciated for its appearance; a feature that determines, to a great
extent, its price. When wood is used for flooring, decking or façade
cladding (in this case we usually refer to it as engineered wood),
strict selection procedures are needed to assure satisfactory aes-
thetic results. To obtain beautiful and uniform surfaces, wood has
to be carefully graded by fibre type and colour tone. In an increas-
ingly globalised and competitive market, it is mandatory that wood
products – particularly those of high range – be virtually extent of
any defects. In an endeavour to meet such requirements and in-
crease market shares, producers are trying to drastically improve
their quality standards. In this context quality inspection plays a
central role.

As noted by Bombardier and Schmitt (2010), wood quality
inspection involves two different and clearly separated problems:
(1) detection, localization and classification of surface defects;
and (2) sorting products into lots of similar appearance. In the
parquet industry the two processes are usually carried out sequen-
tially and in this order. Both can be performed either manually or
automatically. Technically speaking the first problem is referred to
as grading and is related to detecting, measuring and counting
superficial defects like knots, pockets, stains, veins, cracks, etc.

Domain-specific standards (DIN-1611, 2002; DIN-EN-975-1, 2011;
DIN-EN-975-2, 2004) define different wood grades on the basis
of the number and size of such defects along with procedures to
their measurement and detection.

As for the second problem, we can find it referred to as
sorting (Lu, Conners, Kline, & Araman, 1997), colour classification
(Kurdthongmee, 2008), or, again, grading (Faria, Martins, Ferreira,
& Santos, 2008; Vienonen, Asikainen, & Eronen, 2002). To avoid
confusion, throughout this paper we use the term grading to refer
to the first problem and sorting for the second.

When performed manually, grading is stressful and time con-
suming, though, in general, not particularly demanding, since de-
fects are usually quite evident. In contrast, sorting products into
groups of similar appearance is more subtle, since products of
the same class may have differences in tone which can be very
slight and difficult to detect even to a trained eye. In addition this
process requires more than one slab to be observed at the same
time. Subjective and environmental conditions, tiredness, boredom
and other factors can significantly affect the outcome of the
process. To this we should add that recent studies showed how
colour perception can be significantly influenced by age and
socio-economical level of the subject (Kose, 2008). Our personal
experience indeed confirms that different operators can produce
very dissimilar results. Beginning with these considerations, it is
therefore no surprise that the agreement between different opera-
tors can be as low as 60% (Roz̆man, Brezak, & Petrovic, 2006). As a
consequence, manual inspection procedures can produce batches
of products with significant variations of the visual appearance,
causing sales returns and significant economical losses.

Parquet producers are therefore more and more concerned with
the development of computer vision systems capable of carrying
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out automatic quality control procedures. In this paper, in particu-
lar, we are concerned with the second problem, that of measuring
and comparing the visual appearance of parquet slabs in order to
sort them according to suitable similarity criteria. More specifically
we focus on the problem of colour sorting slabs of the same grade
and quality. This consists of dividing a previously graded batch of
parquet hardwood into different colour tones, among which differ-
ences in colour are usually very slight, yet noticeable. To this end
we experimentally compare the effectiveness of a set of colour
descriptors and spaces. We also discuss issues related to image
acquisition and processing including computational time, which
are of primary importance when it comes to designing and imple-
menting practical, real-time solutions.

The remainder of the paper begins with a brief survey of related
research (Section 2). In the following sections we give a description
of the materials (Section 3) and methods (Section 4) used in our re-
search. In Section 5 we present the experimental activity followed
by results (Section 6) and conclusions (Section 7).

2. Related research

The first applications of computer vision to the wood industry
date back to the 1980s (Conners, McMillin, & Lin, 1983; Sobey &
Semple, 1989). Literature review shows that, since then, research
has mostly focused on the problem of grading. Studies have con-
firmed that it is possible to replace manual graders with automatic
systems improving production effectiveness and product quality
(Kline, Surak, & Araman, 2006; Lycken, 2006). A preliminary step
to automatic grading is defect detection and characterization. This
has been typically approached using spectral features (Åström,
Åstrand, & Johansson, 1999), spectral and X-ray features (Bond,
Kline, & Araman, 2002), colour features (Ciccotelli & Portala,
1992; Conners et al., 1992) and combinations of colour and texture
features (Gu, Andersson, & Vicen, 2010; Kyllönen & Pietikäinen,
2000). Other authors focused on how to deal with the grading
problem once defects have been detected and located (Castellani
& Rowlands, 2009; Lycken, 2006). For an up-to-date survey on auto-
matic wood grading readers are referred to the work of Jabo (2011).

A more recent application of computer vision to wood products
is the automatic identification of wood types (Labati, Gamassi,
Piuri, & Scotti, 2009). This is about identifying the different types
of wood that make up wood shipments; a procedure that has been
used to detect illegally-traded timber (Hermanson & Wiedenhoeft,
2011).

Herein we are concerned with the problem of sorting parquet
hardwood into different colour tones. We therefore assume that
hardwood has been already graded, either automatically or manu-
ally. A round-up of the methods presented in this paragraph can be
found in Table 1. Piuri and Scotti (2010) noted that approaches to
colour-based sorting can be divided into two groups: image-based
and spectrum-based processing systems. Both groups have pros
and cons. Spectrum-based systems have the advantage of relying

on device-independent data, but the disadvantage of a limited
inspection area, which does not allow for full-field measurements.
Conversely, image-based systems enable full-field inspection, but
need colour calibration to produce device-independent data.
Vienonen et al. (2002) described a spectrophotometric system which
takes four circular samples of approximately 20 mm radius from
each parquet block. A 56-bin spectrum (from 275 to 965 nm) is
computed from each block and used as feature vector. Classifica-
tion is based on two approaches: minimum distance classifier
and a subspace classifier. Likewise, Buchelt and Wagenführ
(2012) used a spectrophotometer to evaluate colour differences
of native wood surfaces. In their approach spectral data are con-
verted into CIE Lab to estimate the intra-class colour difference
DE�ab

� �
of different species. In the same way, Schnabel, Zimmer,

and Petutschnigg (2009) use spectrophotometric data and convert
them into CIE Lab to model colour changes that wood undergoes
during its lifetime.

Methods based on image processing work with the output of
industrial cameras, which is usually a set of RGB triplets. These
can be either used ‘as is’ or converted into different colour spaces,
such as HSV, CIE Lab, etc. In both cases the aim is to extract global
statistical descriptors that characterize the colour content of the
images. In the design of an expert system for wood sorting based
on image processing, one has to deal with the choice of the right
colour space and the appropriate descriptor. Related literature
shows that various solutions have been proposed in the past. Lu
et al. (1997) described a system based on 3D RGB histograms and
minimum distance classifier for real-time colour sorting of edge-
glued panel parts reporting an accuracy ranging from 83.0% to
99.1%. Kurdthongmee (2008) described an approach for colour-
based classification of rubberwood boards for fingerjoint manufac-
turing in which a neural network is fed with a normalized histogram
of hue (H). In a qualitative study Hrčka (2008) investigated the use
of colour features to classify between common beech and European
spruce, showing that colour coordinates in the CIE Lab space
separate the two species rather well. Faria et al. (2008) employed
both device-dependent (HSV) and device-independent (CIE Lab)
colour coordinates for sorting three different types of wood, namely
cherry tree, beech tree and oak. Their method employs a fuzzy
classifier based on a bell membership function for each of the colour
coordinates. More recently Bombardier and Schmitt (2010) used
mean and homogeneity extracted from CIE Lab and HSV channels
as colour features, and a fuzzy reasoning classifier as the building
blocks of an expert system for wood colour recognition.

This review of image processing-based methods shows that a
wide variety of approaches have been proposed in literature, but,
at the same time, leaves the reader uncertain about which is the
‘best practice’ when it comes to designing and implementing an
automatic sorting system. The results presented in the papers cited
above look in fact rather scattered, inhomogeneous and therefore
difficult to compare to each other. Even more difficult is to repro-
duce the results presented in them, for data and algorithms used
in the experiments are not available. Lastly, it is worth noticing that

Table 1
Summary list of methods for colour-based wood sorting.

Reference Method Colour descriptor Colour space

Arden (1991) Image-based Marginal histograms RGB
Lu et al. (1997) Image-based 3D histogram RGB
Vienonen et al. (2002) Spectrum-based Spectral histogram Spectrum
Kurdthongmee (2008) Image-based One marginal histogram (hue) HSV
Hrčka (2008) Image-based Mean + standard deviation CIE Lab
Faria et al. (2008) Image-based Approx. marginal histograms HSV, CIE Lab
Schnabel et al. (2009) Spectrum-based Mean CIE Lab
Bombardier and Schmitt (2010) Image-based Mean + homogeneity CIE Lab + HSV
Buchelt and Wagenführ (2012) Spectrum-based Mean CIE Lab
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none of the above cited works provides a comparative analysis of
methods on a statistical basis. As a consequence it is difficult to pro-
vide sensible answers to questions like: Which colour descriptor
gives the best accuracy? Is there a colour space superior to the oth-
ers? What is the trade-off between accuracy and computational
payload? In the following sections we try to answer these questions
on the basis of a comparative experimental analysis.

3. Materials

We considered 14 classes of common parquet hardwood of
different type, treatment and finish, as detailed in Table 3. The
number of colour tones for class ranges from two to four, whereas
the number of samples for tone ranges from six to eight. All the
materials considered in the experiment are top-quality, therefore
containing none to very few minor defects. Preliminary subdivision
of the samples of each class into the different colour tones (‘ground
truth’) has been carefully performed by a pool of experienced
workers.

Images of the hardwood parquet specimens have been captured
through an imaging system composed of a dome illuminator (Mon-
ster Dome Light 18.2500), an industrial CMOS camera equipped with
a 6 mm fixed focal length lens and three pins to support the dome
(Fig. 1). Characteristics and settings of the camera and lens are re-
ported in Table 2. This solution leaves enough space for the speci-
men to pass below the dome and the camera, as if it were carried
by a conveyor belt, a set-up which closely resembles the industrial
conditions in which the system is supposed to operate. The camera
is attached to the dome through a custom-designed support which
permits relative rotation between the camera and the dome
around the focal axis of the camera. The imaging system is patent
pending (Bianconi, González, Fernández, & Saetta, 2012a).

The voltage of the illuminator has been set to 18 V and main-
tained constant throughout the image acquisition procedure. This
provides a light level of about 78,600 lx at the center of the field
of view. In order to avoid colour artifacts arising from image bin-
ning and/or undersampling, images have been taken at the native
resolution of the camera (2560 � 1920 pixels), which corresponds
to a spatial resolution of approximately 180 dpi. Preliminary white
balance has been carried out to adjust colour rendition.

4. Methods

In the following two subsections we review the colour descrip-
tors (Section 4.1) and spaces (Section 4.2) considered in this paper.

In Section 4.3 we also discuss the problem of converting colour
data from a device-dependent space into a device-independent
one.

4.1. Colour descriptors

Colour descriptors are statistical parameters that summarize
the colour content of an image irrespectively of the spatial distri-
bution. Consequently, they are invariant to translation and
rotation, and only slightly dependent on the viewing angle. By con-
trast, they are highly sensitive to changes in illumination. It is
therefore mandatory that this be kept constant during the acquisi-
tion process, a condition that can be obtained, for instance, through
the imaging device used in our experiments (Fig. 1). In real work-
ing conditions we can safely assume that similar devices can be
adopted to produce invariable illumination conditions.

4.1.1. Soft colour descriptors
López, Valiente, Prats, and Ferrer (2008) introduced the term

soft colour descriptors to refer to different combinations of the fol-
lowing simple statistical parameters:

� Mean

lc ¼
1
n

Xn

i¼1

Ic;i ð1Þ

� standard deviation

rc ¼
1

n� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðIc;i � lcÞ
2

vuut ð2Þ

� k-th moment

mc;k ¼
Xn

i¼1

ðIc;i � lcÞ
khcðIc;iÞ ð3Þ

In the above equations n is the number of pixels in the input im-
age, Ic,i the intensity of the i-th pixel in the c-th colour channel,
hc(x) the probability of the intensity value x in the c-th channel
(usually estimated through a discrete histogram – hence the
symbol hc, as in Eq. (4)) and lc the average intensity value of the
c-th channel. Throughout the paper we assume that Ic,i 2 [0,1] in
any colour space. In our implementation this is obtained through
appropriate normalization of the input data.

Soft descriptors are easy to implement and fast to compute,
therefore particularly suitable for real-time processing. Different
combinations of soft colour descriptors proved effective in applica-
tions ranging from grading of stoneware tiles (López et al., 2008) toFig. 1. The imaging system.

Table 2
Characteristics and settings of the camera and lens.

Camera
Model Edmund Optics 5012C LE
Red gain 1.78 �
Green gain 1.00 �
Blue gain 1.33 �
Gamma correction No
Resolution 2560 � 1920
Debayering quality High
Image format RGB24 (.bmp)
Lens
Model Pentax H614-MQ
Focal length 6 mm (fixed)
Aperture value 5.6
Focus �30 cm
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sorting of recyclable paper (Rahman, Hussain, Scavino, Basri, &
Hannan, 2011). In particular, mean values of the R, G and B chan-
nels alone showed surprisingly good performance in many tasks
including automatic grading of ceramic tiles (Kukkonen, Kälviäinen,
& Parkkinen, 2001) and banknote recognition (Garcı́a-Lamont,
Cervantes, & López, 2012). Recently, Bombardier and Schmitt
(2010) approached the problem of wood colour recognition by
combining mean and homogeneity in the CIE Lab space. As for
homogeneity, herein we used the following definition:

homc ¼
XL

l¼1

hc½xðlÞ�
xðlÞ ð4Þ

where x(l) represents the intensity value corresponding to the
l-th bin of the histogram hc. In our implementation the value x(l)
is measured at the centroid of each bin. Since bins’ edges are
monotonically-increasing values in [0,1], this approach ensures that
Eq. (4) generates no division by zero. For this reason the definition
of homogeneity used here is slightly different from the one
proposed in the original references (Bombardier & Schmitt, 2010;
Schmitt, 2007). In that case, in fact, a division by zero may occur
when i = 0 (see Schmitt, 2007, Eq. 3.24).

4.1.2. Colour percentiles
A percentile is the value that cuts the distribution of a random

variable into two parts so that a given percent of observations fall
below that value. Colour percentiles are generally computed from
each colour channel. In wood grading they have been used both
alone and in combination with textural features. Kauppinen
(2000) employed colour percentiles alone in a non-segmenting
method for grading parquet slabs. Niskanen, Silvén, and Kauppinen
(2001) used colour percentiles in combination with either co-
occurrence features or Local Binary Patterns for identification of
knots in wood inspection. Recently Bianconi, González, Fernández,
and Saetta (2012b) proved the method effective also in automatic
classification of granite tiles. In the experiments presented herein,
we used quartiles and quintiles of each colour channel. These are
the values that cut the probability distribution of the intensity into
equally-populated groups each containing 1/4 and 1/5 of the pop-
ulation, respectively.

4.1.3. Marginal histograms
Marginal histograms estimate the colour content of an image

through the probability distribution of colours as a function of each
channel separately, thus discarding any information about the
other channels. Marginal histograms can be considered as projec-
tions of the 3D colour histogram (discussed in the following sub-
section) into three one-dimensional subspaces. Herein we
considered histograms composed of 8, 16 and 32 bins for each
channel, giving 24, 48 and 96 features, respectively (see Table 4).
Marginal colour histograms performed well in practical applica-
tions such as classification of printed colour paper (Pietikäinen,
Nieminen, Marszalec, & Ojala, 1996), natural rocks (Lepistö, Kunttu,
& Visa, 2005) and generic colour textures (Bianconi, Harvey,
Southam, & Fernández, 2011a). In colour-based wood sorting their
use has been propounded by Arden (1991) and, more recently, by
Kurdthongmee (2008).

4.1.4. 3D colour histogram
The 3D colour histogram estimates the joint probability distri-

bution in the colour space. The method, which was originally pro-
posed by Swain and Ballard (1991), consists of dividing the colour
space in parts of equal volume and counting how many times each
part is represented in the input image. Lu et al. (1997) used the 3D
colour histogram for colour sorting edge-glued wooded panels. In
our experiments we adopted the implementation proposed by

Mäenpää and Pietikäinen (2004) in which the colour space is par-
titioned by dividing each colour channel into segments of equal
length. Since we used eight subdivisions for each channel, the
method generates 83 = 512 features.

4.2. Colour spaces

Critical to the application studied herein is the choice of the
right colour space. This can be either a device-dependent or a
device-independent one. Device-dependent spaces are not directly
related to how the human vision system perceives colours: they
simply encode device-specific data at the device level (Kang,
2006). Device-dependent spaces include additive spaces, such as
RGB and HSV, and subtractive spaces (not considered here). In con-
trast, device-independent colour spaces (also called colorimetric
spaces) are directly related to the human vision system. Their main
objective is in fact to define colour coordinates that are universally
valid for the group of normal observers (Wyszecki & Styles, 1982).
The basic colorimetric space is CIE XYZ. Any colour space that can
be directly transformed into CIE XYZ is device-independent. A
colour space is said uniform when the Euclidean distance between
colours in that space is proportional to colour differences as
perceived by humans. CIE Lab and CIE Luv are examples of
device-independent and uniform colour spaces.

Related literature for a long time has debated about whether
there is a colour space superior to the others. Device-independent
and uniform colour spaces should be preferable – at least in
principle – since they are intimately related to the way humans
perceive colours. This assertion, however, has not been clearly
confirmed by the experiments. Comparison of different colour
spaces for image classification has in fact led, so far, to contradic-
tory or inconclusive results. Paschos (2001) found that perceptu-
ally uniform/approximately uniform colour spaces (CIE Lab and
HSV, respectively) outperform RGB in many cases. By contrast,
other authors found no significant difference among the colour
spaces considered in their works: in a texture classification exper-
iment Drimbarean and Whelan (2001) showed that none of the
RGB, HSI, CIE XYZ, CIE Lab and YIQ proved sufficiently superior;
likewise, Brunner, Maristany, Butler, VanLeeuwen, and Funck
(1992) found no practically important differences in performance
among RGB, HSV, CIE Lab, CIE Luv and YIQ for defect detection
in Douglas-fir veneer. Finally, Qazi, Alata, Burie, Moussa, and
Maloigne (2011) recently showed that CIE Lab outperforms RGB
and IHLS with textured images, but the trend is reversed for pure
colour feature cues.

In this paper we considered the same colour spaces studied by
Paschos (2001), namely two device-dependent spaces (RGB and
HSV) and one device-independent space (CIE Lab). We believe
these represent sensible and viable choices for the problem studied
herein. In practical applications the use of RGB data is dictated by
the availability of such data as direct output of the imaging system.
This avoids the computational overhead required to convert RGB
data into other colour spaces. RGB, however, is not perceptually
uniform. HSV, in contrast, is approximately uniform and decouples
colour data into an intensity (V channel) and a chromatic part (H
and S channels). RGB colour data are converted to HSV through simple
equations (Kang, 2006). Finally, CIE Lab is a device-independent
and uniform colour space closely related to the human vision
system. To obtain Lab colour coordinates from RGB, one needs to
colour calibrate the image acquisition system. The procedure
adopted here is described in the following section.

4.3. Colour calibration

Colour calibration consists of determining a function that maps
device-dependent colour data into device-independent ones (León,
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Mery, Pedreschi, & León, 2006). The form of the function is estab-
lished a priori. Most commonly this is a polynomial, but other
methods, such as lookup tables (Po-Chieh, 1993) and neural
networks (Schettini, 1995) have been proposed as well. In our
experiments we adopted a simple linear model, which can be
expressed in the following way:

bL�
â�

b̂�

1

266664
377775 ¼

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

0 0 0 1

26664
37775

R

G

B

1

26664
37775 ð5Þ

where bL�; â� and b̂� represent the estimated CIE Lab colour coordi-
nates. This approach has some advantages: it is fast, easy to imple-
ment and requires the estimation of few parameters. Moreover,
previous experiments showed that linear models perform as well
as higher-degree models in colour calibration (Bianconi, Saetta,
Sacchi, Asdrubali, & Baldinelli, 2011b). In order to determine the
parameters of the model (the Mij coefficients), we need a set of ref-
erence colour patches of which both the device-dependent [R,G,B]T

and the device-independent coordinates [L⁄,a⁄,b⁄]T are known. The
first are the raw output of the imaging system, the second can be
measured through a colorimeter or any other colour measuring
device. Most commonly device-independent colour data come
with the reference patches. Here we used a standard calibration
set (X-Rite� Color Checker) which contains 24 colour patches
(Fig. 2). The corresponding device-independent data are available
online (BabelColor, 2012).

The unknown parameters are estimated through a least-squares
procedure:

M ¼
argmin
Mij 2 R

XR

r¼1

L�r � bL�r� �2
þ �a�r � â�r
� �2 þ �b�r � b̂�r

� �2
� �( )

ð6Þ

where L�; �a� and �b� are the ‘true’ CIE Lab colour coordinates of the
reference colour patches, R is the number of the patches (24, in this
case) and M the matrix of Mij coefficients (Eq. (5)).

5. Experiments

In the experimental part we estimated the accuracy of the
methods presented in Section 4. The experiments have been de-
signed to replicate the manual sorting process usually adopted in
industry. In our experience this works as follows: As a first step
one or more workers select one representative wood sample for
each tone of the class of wood which is going to be produced there-
after (in our experiments tones range from two to four per class).
The samples are then passed to the worker in charge of the sorting
process (let us refer to him as the ‘selector’), whom in general is gi-

ven a short time to familiarize with the grades before the selection
process begins. During the selection process the selector takes a
position from which he can see both the tables to select (which
are usually carried on a conveyor belt) and the samples of each
grade. Whenever a table arrives, the selector diverts the slab to
the storage bin corresponding to the sample that the specimen
resembles most. In practice the whole process is clearly a super-
vised classification task in which the samples represent the train-
ing set. Therefore, in order to comparatively evaluate the
performance of the colour descriptors and spaces presented in
the preceding sections, we submitted them to a supervised classi-
fication task. For each wood class we considered all the classifica-
tion problems that can be generated by choosing one sample per
tone for training while leaving the others for validation. This pro-
cedure provides a deterministic estimation of the classification
accuracy. The accuracy estimated this way is also very realistic,
in our view, because the appraisal procedure matches the real
working conditions quite well.

Given T the number of tones for each wood class and S the num-
ber of samples for each tone (see Table 3), the classification accu-
racy a can be expressed in the following way:

a ¼ 1
PTðS� 1Þ

XP

p¼1

Cp ð7Þ

where P is the number of problems (P = ST) and Cp the number of
correctly classified samples in the p-th problem. T(S � 1) represents
the number of samples to classify in each problem.

5.1. Classifier

The selection of the appropriate classifier is always a crucial and
difficult step in the design of an expert system. In this work two
conditions limit this choice drastically: (1) the need for a classifier
that works even with one training sample only (see the consider-
ations reported at the beginning of Section 5), and (2) the absence
of tuning parameters, which may significantly modify the relative
performance of the colour descriptors and spaces. This considered,
we thought that the 1-NN classifier would be the most appropriate
solution for the problem studied herein (in our implementation we
used the Euclidean (L2) distance). Absence of tuning parameters,
easiness of implementation and other desirable asymptotic prop-
erties make this classification strategy particularly suitable for
comparative purpose. Furthermore the 1-NN can work even with
few training samples (as few as one, like in this case), whereas
other classifiers, such as SVM, cannot. Finally, recent literature
strongly supports the use of the 1-NN for performance comparison
of image analysis algorithms (Crosier & Griffin, 2010; Guo, Zhang, &
Zhang, 2010; Kandaswamy, Schuckers, & Adjeroh, 2011; Liu,
Fieguth, Clausi, & Kuang, 2012).

5.2. Implementation, execution and reproducible research

Methods and algorithms have been implemented in MATLAB
�

R14. Image acquisition and classification have been performed in
the Department of Industrial Engineering, at the University of
Perugia, on a laptop PC equipped with INTEL

� T2300, 1 GB RAM,
and WINDOWS™ XP – 32 bits, Service Pack 3. For reproducible re-
search purposes, all the data required to replicate the experiments
(i.e.: source code, images and subdivisions into train and validation
sets) are available in Ref. PG (2012).

6. Results

Classification accuracies for each colour descriptor, wood class
and colour space are reported in Table 5. On average the results

Fig. 2. The 24 reference colours of the X-Rite� color checker.
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confirm the effectiveness of the methods considered in the paper,
with most methods attaining an accuracy close to 90%.

For comparison purposes we have computed the 95% confi-
dence intervals of the mean classification accuracy attained by
each colour descriptor in each of the three colour spaces (Fig. 3).
Since data (average accuracies) are not normally-distributed, con-
fidence intervals for the means have been estimated through per-
centile bootstrap (Schmidheiny, 2012). The procedure consist of
drawing a number B of bootstrap samples, computing the distribu-
tion of the mean over the bootstrap samples and deriving the lower
and upper bounds of the confidence interval as the 2.5 and 97.5
percentiles of such distribution. Parameter B needs to be set by
the user: Schmidheiny (2012) recommends using 1000 or more
replications; herein we used 2000, as suggested by Wang (2001).

We observe that in none of the three colour spaces there is a
colour descriptor significantly superior to the others. Indeed
Fig. 3 clearly shows large overlap among all the confidence inter-
vals. It is interesting to notice that the simplest descriptor (mean
of each colour channel) performs as good as the others. In contrast,
the performance of 3D colour histograms is appreciably lower –
though, as we mentioned above, this difference does not reach sta-
tistical significance. This result is logical and stems from the intrin-
sic structure of colour histograms (Bianconi, Fernández, González,
Caride, & Calviño, 2009): since colour differences between grades
are very subtle (see Fig. 3) colours tend to spread over a limited
portion of the colour space. Therefore, while different colours can
be assigned to the same bin of the 3D histogram, many other bins
remain empty. The same considerations apply to marginal histo-
grams: here we notice that accuracy improves as the number of
subdivisions increases, as one would expect, since a finer subdivi-
sion of each colour axis allows for better discrimination between

tones. Soft colour descriptors show very similar performance, sug-
gesting that it is not much use adding higher-order statistical
descriptors to the simple mean. Likewise, colour percentiles do
not represent a significant improvement on soft colour descriptors
(see Fig. 4).

As for colour spaces, the results show that there is very little dif-
ference among RGB, HSV and CIE Lab: none of them proved signif-
icantly superior. These findings confirm the conclusions obtained
by Brunner et al. (1992) and Drimbarean and Whelan (2001). These
results suggest that RGB data are better employed with no changes
or modifications: converting them into other colour spaces only
adds unnecessary overhead without appreciable beneficial effects.
We also notice that the general trend is very similar for the three
colour spaces, showing no appreciable interaction effects between
colour descriptor and colour space.

Finally, it is worth mentioning that the overall processing time
(feature extraction + classification) is rather contained, with most
descriptors completing the task in less than 1 s. (see Table 4). We
can see that most of the variability in computing time is due to fea-
ture extraction, whereas 1-NN classification requires almost the
same amount of time for all descriptors. Furthermore, we should
not forget that these figures have been obtained using a scripting
language running on low cost hardware; therefore they largely
overestimate the real computing time that can be achieved
through dedicated hardware and optimized code.

7. Conclusions

In this paper we have presented a performance analysis of dif-
ferent colour descriptors and spaces for sorting parquet slabs into

Table 3
Summary list of the hardwood parquet samples used in the experiments.

Wood class Botanical name Treatment Tones Samples/tone Image resolution

1 Clorophora excelsa None 8 1200 � 600

2 Quercus petrea Painted 8 1500 � 500

3 Quercus petrea UV-treated, painted 8 1300 � 1000

4 Quercus petrea Painted 8 1400 � 480

5 Quercus petrea None 6 1300 � 480

6 Quercus petrea UV-treated, brushed 8 1400 � 1300

7 Quercus petrea Oil-treated, hand-planed, painted 7 1400 � 1300

8 Quercus petrea Oil-treated, hand-planed 8 1500 � 1300

9 Quercus petrea Thermo-treated 8 1500 � 1300

10 Quercus petrea Thermo-treated 8 1500 � 1300

11 Quercus petrea Brushed 8 1400 � 1300

12 Quercus petrea Oil-treated 8 2000 � 600

13 Tectona grandis None 8 1600 � 600

14 Tectona grandis None 8 1200 � 600
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classes of similar visual appearance. To the best of our knowledge,
this is the first comprehensive study on the subject based on statis-
tical analysis and reproducible experiments.

The overall results show, on average, a low error classification
process with about 90% accuracy. Most methods are also computa-

tionally inexpensive, therefore suitable for real-time processing.
This outcome is satisfactory, considering that the results have been
obtained with standard industrial equipment – specifically a sin-
gle-sensor camera – and a very simple classifier (1-NN). We believe
that the overall accuracy could be significantly increased by adopt-
ing higher-level imaging devices (i.e.: 3-sensor camera) and more
sophisticated classifiers. The comparative analysis showed no
significant difference between the descriptors and colour spaces

Fig. 3. Confidence intervals for the average classification accuracy (%) in the three colour spaces.

Fig. 4. Confidence intervals for the average classification accuracy (%) for each
colour space.

Table 4
Colour descriptors used in the experiments. Average extraction and classification time
(in seconds) refer to the equipment described in Section 5.2.

Color descriptor No. of
features

Avg. extraction
time (a)

Avg.
classification
time (b)

(a + b)

Mean 3 0.236 0.029 0.265
Mean + hom. 6 0.863 0.030 0.894
Mean + std 6 0.439 0.028 0.468
Mean + std + mom. 15 8.059 0.028 8.087
Quartiles 9 2.218 0.028 2.246
Quintiles 12 2.234 0.028 2.263
Marg. hist. (8 � 3) 24 0.542 0.029 0.571
Marg. hist.

(16 � 3)
48 0.571 0.029 0.600

Marg. hist.
(32 � 3)

96 0.610 0.029 0.639

3D hist. (83) 512 0.705 0.029 0.734
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considered in the paper, therefore suggesting – from both stand-
points of accuracy and computational efficiency – the use of simple
statistical descriptors along with RGB data as the best practice.
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