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a b s t r a c t

This paper investigates the problem of learning sets of discriminative patterns from local binary patterns

(LBP). Such patterns are usually referred to as ‘dominant local binary patterns’ (DLBP). The strategies to ob-

tain the dominant patterns may either keep knowledge of the patterns labels or discard it. It is the aim of

this work to determine which is the best option. To this end the paper studies the effectiveness of differ-

ent strategies in terms of accuracy, data compression ratio and time complexity. The results show that DLBP

provides a significant compression rate with only a slight accuracy decrease with respect to LBP, and that

retaining information about the patterns’ labels improves the discrimination capability of DLBP. Theoretical

analysis of time complexity revealed that the gain/loss provided by DLBP vs. LBP depends on the classifica-

tion strategy: we show that, asymptotically, there is in principle no advantage when classification is based

on computationally-cheap methods (such as nearest neighbour and nearest mean classifiers), because in this

case determining the dominant patterns is computationally more expensive than classifying using the whole

feature vector; by contrast, pattern selection can be beneficial with more complex classifiers such as support

vector machines.

© 2015 Elsevier B.V. All rights reserved.

p

e

T

s

t

h

i

b

[

p

f

r

s

p

n

t

d

t

1. Introduction

LBP is a very popular approach to texture analysis with appli-

cations in a wide range of areas such as, among others, surface in-

spection, face recognition, biometrics and medical image analysis [2].

The method is much appreciated for its many desirable properties,

such as ease of implementation, invariance to illumination changes,

limited computational demand and high descriptive performance –

especially when the level of noise is low [14]. LBP considers, as im-

age features, the occurrence probability of the binary patterns that

can be generated from an image patch of predefined shape and size

when thresholded at the value of the central pixel. It is well known

that the resulting probability distribution tends to be highly un-

even: some patterns tend to occur much more frequently than oth-

ers [24]. Many researchers have been concerned with the problem

of reducing the dimensionality of LBP by determining the subsets

of patterns that convey the largest amount of information. A com-

mon approach consists of reducing the number of features by using

some a priori rules [20]: Ojala et al. for instance proposed to cluster
✩ This paper has been recommended for acceptance by A. Heyden.
∗ Corresponding author. Tel.: +39 75 5853703; fax: +39 75 5853703.
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atterns into rotationally-equivalent classes, an approach which gen-

rates the well-known family of rotation invariant descriptors (LBPri).

hey also suggested that further reduction could be obtained by con-

idering the so called ‘uniform patterns’ (LBPriu2), namely those pat-

erns that have at most two bitwise transitions [24]. Experiments

ave shown that uniform patterns are the most common in natural

mages [24], a finding which was later on explained on a theoretical

asis [1].

As an alternative, Liao et al. [17] and, more recently, Nanni et al.

22] and Guo et al. [12], proposed a posteriori strategies in which the

atterns to retain are learnt from some training data. Liao et al. [17]

or instance suggested to retain, as features, the probability of occur-

ence of the smallest set of patterns that, in any given image, repre-

ent a certain percent – 80% in their implementation – of the total

opulation. The resulting dominant local binary patterns (DLBP) bear

o information about the patterns’ labels [17]; instead, they consider

he relative patterns’ frequency only. As a consequence this scheme

oes not guarantee that the ith element of the feature vector ex-

racted from an image I1 and the ith element of the feature vector

xtracted from an image I2 refer to the same pattern. For this reason

e refer to such selection strategy as an unlabelled model. A natu-

al question arises whether comparing the probability of occurrence

f different patterns makes sense altogether [6]. In [17] the authors

ffirm that omitting the pattern type information is not harmful; in

http://dx.doi.org/10.1016/j.patrec.2015.06.025
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Table 1

Number of local binary patterns.

m N

LBPm,R LBPri
m,R

4 16 6

8 256 36

16 65,536 4116

24 16,777,216 699,252
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his paper we endorse a diametric opposite view: that neglecting

nformation about the patterns type has negative effects on the dis-

rimination capability of the method. Our main claim is that feature

election schemes that keep knowledge of the patterns’ type outper-

orm the unlabelled approach. We refer to such reduction schemes as

abelled methods.

In the remainder of the paper, after recalling the basics of LBP

n Section 2, we discuss the unlabelled (Section 3) and labelled

Section 4) approach for determining dominant local binary patterns

nd perform an experimental comparison in Section 5. The results

resented in Section 6 show that in no case the unlabelled model is

uperior to the labelled counterparts. We also evaluate the compres-

ion ratio that can be obtained with the various methods and study

he effect of the different feature reduction schemes on the overall

omputing time. Section 7 concludes the paper with some final con-

iderations.

. Brief overview of LBP

The LBP operator characterizes images through the probability

f occurrence of certain binary patterns that a neighbourhood of

redefined shape and size can generate [24]. The typical configura-

ion consists of a central pixel plus a set of peripheral points evenly

paced along a circle (see Fig. 1) – but other arrangements have been

roposed as well [21]. The intensity values of those points that do

ot coincide with image pixels are estimated through interpolation.

uch neighbourhoods are conventionally indicated in the form (m, R),

here m represents the number of peripheral points and R the radius

f the circle.

For each position of the neighbourhood a corresponding binary

attern is obtained by thresholding the intensity values of the pe-

ipheral points at the value of the central pixel. Each binary patterns

s then assigned a unique label in the following way:

BPm,R =
m−1∑
i=0

2iξ(Ii − Ic) (1)

here ξ is the binary thresholding function (Eq. 2).

(x) =
{

1, if x ≥ 0

0, if x < 0
(2)

As a result, the LBPm, R operator produces 2m different binary pat-

erns. Theoretically, when the input image rotates by angular steps

f ±2π /m radians, the binary sequence {ξ(Ii − Ic)}, i ∈ {1, . . . , m − 1}
ircularly shifts by one position to the left or to the right. To make

he descriptor invariant against rotation, one can consider equivalent

ll the patterns that can be transformed into one another by a rota-

ion of multiples of ±2π /m radians. This approach gives rise to the

otation invariant operator, usually referred to as LBPri
m,R. The num-

er of rotationally-equivalent classes for a given m can be determined

hrough group theory, as detailed in Ref. [8]. Table 1 shows the num-

er of features generated by the LBPm,R and LBPri
m,R operators for dif-
Fig. 1. Circular neighbourhood.
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erent values of m. Clearly the dimension of the descriptors grows

uickly as m increases.

High dimensional data are in general difficult to handle due to the

curse of dimensionality’ [7]. Moreover, both experimental and the-

retical studies have suggested that the probability of occurrence of

ocal binary patterns may vary greatly from one pattern to another,

nd that certain patterns very seldom occur in practice [1,24]. As

result, some of them are likely to produce only noisy and irrele-

ant features that may mislead the classification [12]. The problem

f determining the set of ‘most discriminative’ patterns is therefore a

ery actual and interesting one both from a theoretical and practical

tandopint.

. Dominant local binary patterns: the unlabelled model (DLBP)

As we mentioned in Section 1, the unlabelled approach discards

ny information about the patterns’ labels. The method consists of

orting the LBP histogram of each image in descending order and re-

aining a certain number of bins. Given a set of train images, the num-

er of bins to retain is computed by determining, for each train im-

ge, the cardinality of the smallest set of patterns that accounts for

given fraction of the total occurrence probability and by averaging

his value over the whole train set. Each histogram is sorted indepen-

ently of the others in this scheme, therefore any information about

he patterns’ type is lost: the resulting DLBP features will only contain

nformation about the patterns’ frequencies. This strategy is based on

he assumption that it is the relative probability distribution what re-

lly matters, not the occurrence probability of each specific pattern

17]. As for the fraction of the total occurrence to retain, throughout

he paper we maintain the settings proposed in the above-cited refer-

nce, where the authors recommend the value 0.8. From a computa-

ional standpoint, the algorithm is dominated by the ordering of each

ector of the train set, therefore executes in O(MNlogN) time, where

is the number of train patterns and N the dimension of the original

escriptor.

. Dominant local binary patterns: the labelled model

As opposed to the unlabelled model, the labelled model keeps

nowledge of the patterns’ labels. Different implementations of this

pproach have been proposed in the literature: we briefly recall them

n the following subsections.

.1. Labelled dominant local binary patterns (L-DLBP)

Labelled dominant local binary patterns have been described by

u et al. [10] and, more recently, by González et al. [11]. In this scheme

he original LBP histograms of the train images are first averaged

olumn-wise (feature-by-feature) and the resulting vector (average

atterns’ frequencies) is sorted in descending order. Then the labels of

he smallest set of co-occurrences that sum at least 0.8 are retained;

he others are discarded. The labels this way obtained constitute the

et of dominant patterns; the feature vector of any image is repre-

ented by the probabilities of occurrence of these patterns. From a
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computational standpoint the approach involves computing the av-

erage of each feature over the train set and sorting the result, which

gives a time complexity of O(max[MN, NlogN]).

4.2. Highest-variance dominant local binary patterns (HV-DLBP)

Highest-variance dominant local binary patterns, introduced by

Nanni et al. [22], retain the local binary patterns with the highest

variance. The first step of this procedure therefore consists of com-

puting the column-wise (feature-by-feature) variance of the pattern

histograms of the train images; the resulting vector is then sorted in

descending order. The dominant patterns are represented by the la-

bels of the smallest set of patterns that accounts for at least 0.8 of the

total variance. The computational complexity is the same as L-DLBP.

4.3. Highest-rank dominant local binary patterns (HR-DLBP)

Highest-rank dominant local binary patterns, recently proposed

by Doshi and Schaefer [6], select the dominant patterns through a

preliminary rank transform of the pattern histograms. In the first step

each pattern histogram of the train images is sorted and ranked: the

most frequent pattern in each image is assigned the highest rank; the

least frequent is assigned rank one. The ranks are averaged and the re-

sulting vector (average rank) is sorted in descending order. The num-

ber of patterns to retain is the cardinality of the minimum set that

accounts for at least 0.8 of the sum of the average rank. The method

requires sorting each train patterns and averaging the resulting ranks,

therefore executes in O(MNlogN) time.

4.4. Discriminative features (DF-DLBP)

Guo et al. [12] discriminative features represent a more involved

learning framework for determining dominant patterns. This three-

layer approach works as follows. The first step (referred to as ‘layer 1’

in Ref. [12]) involves sorting each pattern histogram of the train set

and retaining the smallest set of labels that account for a given frac-

tion (0.8 in this case) of the total probability. This operation that can

be carried out in O(MNlogN) time. The second step (‘layer 2’) consists

of intersecting, for each class, the sets of labels returned by each train

pattern belonging to that class. Layer 2 gives, as a result, the dominant

pattern set of each class. Assuming that the train patterns are equally

distributed among the classes, so that there are M/C train patterns

per class, we perform this operation in O(2N(M − C)) time, where C

is the number of classes. In the third step (‘layer 3’) the dominant pat-

terns set is obtained as the union of dominant patterns of each class.

The complexity of this operation is O(2N(C − 1)) in the worst case.

Asymptotically, the execution is dominated by layer 1, therefore the

time complexity of the whole method is O(MNlogN).

Differently from the other methods, this approach guarantees that

any class in the training set is adequately represented within the se-

lected patterns. A potential disadvantage could be the high number

of features that the method produces, which in principle gets higher

when the number of classes grows.

5. Experiments

We conducted a supervised image classification experiment to

evaluate the effectiveness of the different strategies for obtaining

dominant local binary patterns presented in Sections 3 and 4. The

overall objective was to determine the effect of including/omitting

information about the patterns’ labels on the classification accuracy.

We also investigate the compression ratio that can be achieved with

the various strategies, as well as the average computing time of the

different methods. As a baseline for comparison, we considered the

original, full-dimensional, LBPri
8,1

and LBPri
16,2

descriptors [24]. For cal-

ibration purposes we also included the results obtained with the

LTPriu2
8,1

and LTPriu2
16,2

operators [27]. In all the experiments the thresh-
old value for LTP was set to τ = 3 as suggested in Ref. [23].
.1. Datasets

We considered eight datasets containing different types of texture

mages. Dataset one contains a selection of 80 texture images from

he ALOT database [3]. Dataset two contains 13 texture classes from

rodatz (hardware-rotated digital images have been captured in our

aboratory directly from the original book.) Dataset three includes all

he 25 classes of the Kylberg–Sintorn rotation database. Dataset four

s the whole Mondial Marmi database (v 1.1), which comprises 12

lasses of granite textures. Dataset five covers a selection of 45 tex-

ure classes from Outex. Dataset six is composed of a set of texture

mages obtained from vectorial pictures: in this case the vectorial im-

ges were first rotated, then raster-scanned to get the rotated texture

mages. A detailed description of datasets from one to six is also avail-

ble in [11]. Dataset seven is a two-class database containing a subset

f images from the Pap-smear benchmark [13,23]: to have an equal

umber of the two classes (i.e.: normal vs. abnormal) we selected 68

mage samples from each of the three normal classes (i.e.: superficial

quamous epithelial, intermediate squamous epithelial and colum-

ar epithelial) and 51 from each of four the abnormal classes (i.e.:

ight dysplastic, moderately dysplastic, severely dysplastic and carci-

oma in situ). Finally, dataset eight is made up of a selection of images

rom the 2D HeLa database [25]. In this case for each of the 10 classes

f the database – which represent sub-cellular organelles such as nu-

lei, endoplasmic reticulum, giantin, cis/medial Golgi, cis Golgi, lyso-

omes, mitochondria, nucleoli, actin, endosomes, and tubulin – we

btained 20 images samples for each class by manually selecting rep-

esentative textured regions from as many images of the correspond-

ng organelles. Summary data and sample images of each dataset are

eported in Table 2.

.2. Classification and accuracy estimation

We employed four different classification strategies: (1) nearest-

eighbour (1-NN) rule with L2 distance; (2) nearest mean classifier

NMC) with L2 distance; (3) naïve Bayes (NB) classifier with multino-

ial distribution and (4) support vector machine (SVM) with radial

asis kernel. Based on theoretical considerations on the spread of the

nput data (see Ref. [5]), we used a fixed value of 2
√

(m − 1)/m for

VM parameter C, where m is the number of features, and estimated

trough 10-fold validation from the training data over the discrete

et of values {2−9, 2−7, . . . , 29}.

Accuracy estimation was based on 100-fold split-half validation

ith stratified sampling. For each subdivision into train and test set

he classifier was trained with the images of the 0°-group and tested

ith the images of each of the θ °-group (including the 0°-group), be-

ng θ one of the rotation angles available in each dataset (see Table

). The accuracy for each rotation angle was the percentage of test

mages correctly classified. These values were averaged over the ro-

ation angles of each dataset to give a global accuracy measure. The

esulting figures are reported in Tables 3 and 4.

.3. Implementation, execution and reproducible research

All the algorithms discussed in this work have been implemented

n Matlab
® and executed on a laptop PC with 8 Gb RAM powered

y Intel
®

core
TM

i5 and Windows
TM

7 Professional. Extraction of LBP

eatures was based on the routines provided by the Center for Ma-

hine Vision Research at the University of Oulu, Oulu, Finland [15].

he classification routines were based on PRTools v5 [26] and lib-

vm [18] for the 1-NN and SVM classifiers, respectively; on Matlab
®’s

uilt-in functions for the naïve Bayes and NMC. For reproducible re-

earch purposes, all the data required to replicate the experiments

i.e.: source code, images and subdivisions into train and validation

ets) are available online (Ref. [16])1.
1 To access the page: user = dominant, password = patterns
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Table 2

Image datasets used in the experiments: summary table.

No. Source Rotation No. of Samples/ Image Sample images

angles classes class resolution

1 ALOT 0°, 60°, 120°, 180° 80 16 181 × 181

2 Brodatz 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90° 13 16 205 × 205

3 Kylberg–Sintorn 0°, 40°, 80°, 120°, 160°, 200°, 240°, 280°, 320° 25 16 512 × 512

4 Mondial-Marmi 0°, 5°, 10°, 15°, 30°, 45°, 60°, 75°, 90° 12 16 272 × 272

5 Outex 0°, 5°, 10°, 15°, 30°, 45°, 60°, 75°, 90° 45 20 128 × 128

6 Vectorial 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90° 20 16 225 × 225

7 Pap smear 0° 2 204 Variable

8 2D HeLa 0° 10 20 Variable

Table 3

Classification results (1-NN and SVM classifier).

Classifier 1-NN (L2) SVM

Dataset 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Baseline

LBPri
8,1 70.6 83.4 89.9 82.5 74.4 70.5 75.5 60.1 69.6 83.6 89.3 76.5 77.5 66.2 82.4 63.6

Unlabelled methods

DLBPri
8,1 58.1 81.9 83.4 80.9 67.5 55.7 72.7 50.7 54.9 81.9 81.4 74.6 69.7 53.4 77.7 53.1

Labelled methods

LBPriu2
8,1 70.0 84.6 89.5 82.4 74.4 71.9 75.2 59.1 69.0 84.5 88.9 76.4 77.4 70.3 81.9 62.1

L-DLBPri
8,1 66.4 82.8 89.0 81.5 72.7 54.8 73.2 60.0 64.9 82.8 88.1 75.5 75.6 52.7 81.6 63.7

HV-DLBPri
8,1 67.9 83.4 87.5 80.2 74.2 65.7 74.2 60.0 66.2 83.3 86.5 74.5 77.1 61.3 81.6 63.5

HR-LBPri
8,1 66.4 80.9 89.0 81.5 72.6 54.8 73.2 60.0 64.9 80.9 88.1 75.6 75.5 52.8 81.6 63.3

DF-DLBPri
8,1 69.4 81.7 89.5 81.5 74.2 61.4 65.0 60.0 68.1 81.7 88.8 75.6 77.1 59.2 75.2 63.2

LTPri
8,1 72.4 91.8 91.5 86.1 76.5 77.8 81.2 62.0 74.0 91.2 91.2 85.2 77.5 78.7 84.2 65.1

LTPriu2
8,1 72.8 92.0 91.5 86.1 77.4 79.1 81.8 61.0 74.3 91.3 90.9 85.2 78.5 80.2 85.0 63.4

Baseline

LBPri
16,2 74.9 95.0 86.6 87.3 79.5 75.4 75.7 65.2 72.7 93.4 85.3 78.9 83.0 75.0 80.5 71.0

Unlabelled methods

DLBPri
16,2 64.9 90.5 82.7 85.6 70.2 66.6 72.2 56.0 56.4 89.4 75.4 75.6 71.5 61.9 74.5 56.5

Labelled methods

LBPriu2
16,2 73.5 95.0 85.9 85.4 78.4 68.1 74.1 64.0 71.2 93.2 84.2 77.3 81.3 69.7 79.6 67.9

L-DLBPri
16,2 74.4 95.0 86.5 86.9 79.1 69.4 75.5 66.5 71.9 93.4 85.0 78.6 82.5 66.5 80.5 70.5

HV-DLBPri
16,2 74.8 95.0 86.5 87.2 79.5 74.8 75.6 65.1 72.5 93.4 85.2 78.8 82.9 73.6 80.6 70.8

HR-DLBPri
16,2 74.3 95.0 86.5 86.9 79.1 69.4 75.5 66.4 71.8 93.4 85.0 78.5 82.5 66.5 80.5 70.6

DF-DLBPri
16,2 74.8 95.0 86.6 86.9 79.4 73.4 71.7 66.6 72.4 93.4 85.2 78.6 82.8 71.7 76.6 70.4

LTPri
16,2 82.0 97.3 94.7 93.9 86.5 80.8 80.5 65.5 83.7 96.6 94.8 92.5 88.5 81.4 82.9 71.1

LTPriu2
16,2 81.0 97.5 93.1 92.4 86.3 83.4 82.1 64.3 82.0 96.5 91.9 92.3 88.1 82.7 84.6 68.3

6

i

c

6

T

s

. Results

In this section we summarise and discuss the results of the exper-

ments with respect to classification accuracy, compression ratio and

omputing time.
.1. Classification accuracy

The average accuracy values for each datasets are reported in

ables 3 and 4. In boldface we have highlighted the best re-

ult achieved with dominant local binary patterns. The results
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Table 4

Classification results (naïve Bayes and NMC classifier).

Classifier Naïve Bayes NMC (L2)

Dataset 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Baseline

LBPri
8,1 67.0 81.7 87.2 80.4 74.2 75.9 68.2 51.7 57.6 77.3 81.6 76.1 70.7 59.8 57.7 50.7

Unlabelled methods

DLBPri
8,1 49.8 75.5 79.0 78.2 64.2 45.4 56.7 38.4 46.8 75.5 73.3 75.2 62.9 52.4 54.2 44.7

Labelled methods

LBPriu2
8,1 60.5 82.4 84.9 77.7 72.0 72.7 58.7 50.3 56.4 77.9 81.0 75.9 69.8 60.1 57.1 49.8

L-DLBPri
8,1 59.2 75.8 87.2 78.6 70.5 43.9 59.2 50.9 55.3 76.6 80.2 75.9 69.1 52.0 57.0 50.6

HV-DLBPri
8,1 59.5 79.7 84.4 77.1 73.5 56.6 58.3 50.9 55.6 77.3 79.2 74.9 70.5 57.8 56.7 50.6

HR-DLBPri
8,1 59.2 77.0 87.2 78.6 69.2 43.9 59.2 50.9 55.3 75.1 80.2 75.9 69.1 52.0 57.0 50.6

DF-DLBPri
8,1 61.0 74.0 87.2 78.6 73.5 55.0 58.0 50.8 56.8 76.0 81.3 75.9 70.5 57.0 54.3 50.6

LTPri
8,1 67.1 84.4 88.4 81.5 61.1 80.2 70.0 52.8 57.7 79.5 86.3 81.1 53.2 63.4 62.6 52.7

LTPriu2
8,1 65.4 85.3 88.0 80.6 60.0 79.6 68.9 51.4 58.1 79.7 86.9 80.9 53.7 64.5 63.6 51.2

Baseline

LBPri
16,2 72.6 93.8 86.7 84.8 80.8 84.0 73.1 56.4 58.5 91.0 79.5 79.5 78.1 61.5 68.3 56.4

Unlabelled methods

DLBPri
16,2 55.2 90.7 76.8 79.3 71.1 54.1 64.7 48.8 48.5 89.2 71.9 77.9 68.7 55.5 64.8 47.8

Labelled methods

LBPriu2
16,2 60.7 91.9 80.1 79.2 78.5 74.0 67.2 58.3 54.4 90.2 75.0 74.6 73.2 61.2 63.5 52.9

L-DLBPri
16,2 67.8 92.8 81.7 82.5 81.3 59.6 71.5 61.5 58.1 91.1 79.3 79.2 77.7 59.3 68.3 56.3

HV-DLBPri
16,2 71.7 92.2 84.5 86.0 83.7 75.4 72.8 62.0 58.4 91.0 79.4 79.4 78.0 61.2 68.3 56.4

HR-DLBPri
16,2 66.3 92.8 81.3 82.2 81.2 59.6 71.6 61.1 58.0 91.1 79.3 79.2 77.7 59.3 68.3 56.3

DF-DLBPri
16,2 71.3 92.6 84.9 83.1 83.6 71.5 69.4 60.0 58.4 91.0 79.4 79.3 77.9 60.6 67.4 56.2

LTPri
16,2 80.5 94.4 93.7 91.9 80.3 84.6 81.8 55.2 69.6 91.3 92.1 89.4 68.6 68.1 69.1 57.7

LTPriu2
16,2 76.0 94.2 92.0 88.3 78.7 84.7 80.8 58.7 66.9 91.1 89.0 84.8 72.1 72.0 80.0 52.7

Table 5

Compression ratio.

Dataset

1 2 3 4 5 6 7 8

LBPriu2
8,1 4:1 4:1 4:1 4:1 4:1 4:1 4:1 4:1

DLBPri
8,1 5:1 7:1 5:1 4:1 5:1 18:1 5:1 4:1

L-DLBPri
8,1 5:1 7:1 5:1 4:1 5:1 18:1 5:1 4:1

HR-DLBPri
8,1 5:1 7:1 5:1 4:1 5:1 18:1 5:1 4:1

HV-DLBPri
8,1 4:1 5:1 4:1 4:1 4:1 9:1 4:1 4:1

DF-DLBPri
8,1 4:1 7:1 4:1 4:1 4:1 12:1 7:1 4:1

LBPriu2
16,2 229:1 229:1 229:1 229:1 229:1 229:1 229:1 229:1

DLBPri
16,2 96:1 274:1 100:1 56:1 66:1 1029:1 58:1 33:1

L-DLBPri
16,2 96:1 274:1 100:1 56:1 66:1 1029:1 53:1 29:1

HR-DLBPri
16,2 96:1 274:1 100:1 56:1 66:1 1029:1 53:1 29:1

HV-DLBPri
16,2 25:1 96:1 45:1 22:1 20:1 317:1 12:1 5:1

DF-DLBPri
16,2 29:1 137:1 40:1 57:1 30:1 343:1 294:1 51:1
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clearly show that in no case DLPB emerged out as the best

option for determining the dominant patterns: the labelled ap-

proach always performed better than the unlabelled one. Note-

worthily, the decrease in accuracy that one may come into when

using unlabelled dominant patterns can be rather conspicuous,

and in more than one case even in excess of 10 percentage

points. We also observe that dominant local binary patterns –

no matter the strategy adopted to determine them – in gen-

eral performed worse than the original LBP, though in most cases

the difference was very slight. In the (8, 1) configuration it is

worth mentioning the very good performance of LBPriu2 which

provided the best results in most of the datasets and in some

cases it was even better than the original LBP. In the (16, 2)

configuration, however, the accuracy of uniform patterns declined

and it was surpassed by the other methods, among which HV-

DLBP stands out as the best in the majority of the classification

problems.
.2. Compression ratio

Table 5 reports the compression ratio (rounded to the nearest in-

eger) achieved by each feature reduction scheme in each dataset.

his is the proportion between the number of patterns at the baseline

those produced by LBPri
8,1 and LBPri

16,2) and the number of dominant

atterns generated by the various methods. For each dataset the high-

st values are indicated in boldface. The values are in general quite

igh, ranging from 4:1 to 18:1 in the (8, 1) configuration and from

0:1 to 1029:1 in the (16, 2) configuration. Note that the compression

atio provided by the ‘riu2’ model is established a priori, hence is the

ame for all datasets. On average we can see that DF-DLBP and HV-

LBP provided lower compression ratios than the other methods. As

or the former, the outcome is in perfect agreement with the theoret-

cal considerations reported in Section 4.4; as for the latter, the result

uggests that the variance of the patterns’ frequency is distributed

ore evenly among the patterns than the frequency.
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Table 6

Average computing time (feature selection + classification, seconds per problem; 1-NN and SVM classifier).

Classifier 1-NN (L2) SVM

Dataset 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

LBPri
8,1 0.53 0.08 0.12 0.08 0.28 0.11 0.09 0.10 27.21 0.68 2.45 0.58 8.93 1.64 0.38 0.50

LBPriu2
8,1 0.53 0.08 0.12 0.08 0.28 0.11 0.07 0.10 27.42 0.64 2.03 0.49 6.89 1.30 0.28 0.41

DLBPri
8,1 0.52 0.08 0.12 0.08 0.28 0.11 0.07 0.10 22.48 0.61 2.45 0.62 8.31 1.71 0.27 0.38

L-DLBPri
8,1 0.52 0.09 0.12 0.08 0.28 0.10 0.07 0.10 25.29 0.60 2.32 0.54 7.24 1.90 0.27 0.38

HR-DLBPri
8,1 0.54 0.08 0.12 0.08 0.28 0.11 0.07 0.10 24.71 0.60 2.35 0.55 7.74 1.63 0.27 0.37

HV-DLBPri
8,1 0.53 0.14 0.12 0.07 0.28 0.10 0.07 0.10 25.21 0.59 2.32 0.57 7.22 1.95 0.28 0.38

DF-DLBPri
8,1 0.61 0.11 0.15 0.09 0.35 0.11 0.11 0.13 25.53 0.57 2.31 0.56 7.26 1.72 0.27 0.43

LTPri
8,1 0.73 0.10 0.17 0.10 0.38 0.14 0.07 0.09 110.53 2.82 10.68 2.34 35.10 6.70 0.81 1.78

LTPriu2
8,1 0.72 0.11 0.18 0.11 0.39 0.15 0.08 0.10 110.61 2.74 10.70 2.43 33.51 5.83 0.52 1.52

LBPri
16,2 1.04 0.14 0.24 0.13 0.60 0.19 0.20 0.15 272.11 5.01 29.61 6.85 107.44 8.39 21.55 8.01

LBPriu2
16,2 0.53 0.08 0.12 0.07 0.27 0.10 0.07 0.10 23.75 0.61 2.28 0.55 7.50 1.55 0.31 0.42

DLBPri
16,2 1.16 0.18 0.33 0.19 0.70 0.27 0.29 0.22 25.61 0.64 2.27 0.75 9.24 1.77 0.63 0.88

L-DLBPri
16,2 0.75 0.10 0.16 0.09 0.39 0.14 0.11 0.13 27.10 0.65 2.40 0.67 9.26 1.57 0.52 0.94

HR-DLBPri
16,2 1.24 0.18 0.32 0.19 0.70 0.27 0.28 0.20 29.49 0.70 2.59 0.75 9.80 1.75 0.63 1.01

HV-DLBPri
16,2 0.63 0.11 0.17 0.10 0.42 0.15 0.13 0.14 34.57 0.70 2.59 0.82 14.47 1.62 1.63 3.25

DF-DLBPri
16,2 1.11 0.18 0.30 0.18 0.67 0.26 0.27 0.21 34.44 0.70 2.93 0.72 11.45 1.74 0.43 0.75

LTPri
16,2 1.57 0.20 0.35 0.20 0.92 0.32 0.31 0.19 514.91 11.04 65.81 15.67 198.90 21.44 36.09 15.40

LTPriu2
16,2 0.73 0.11 0.18 0.10 0.38 0.15 0.07 0.09 27.78 0.68 2.60 0.72 10.19 1.53 0.55 0.48

Table 7

Average computing time (feature selection + classification, seconds per problem; naïve Bayes and NMC classifier).

Classifier Naïve Bayes NMC

Dataset 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

LBPri
8,1 0.05 0.02 0.02 0.01 0.03 0.02 0.01 0.01 0.01 ∗ ∗ ∗ 0.01 ∗ ∗ ∗

LBPriu2
8,1 0.03 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 ∗ 0.01 ∗ 0.01 ∗ ∗ ∗

DLBPri
8,1 0.03 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 ∗ 0.01 ∗ 0.01 ∗ ∗ 0.01

L-DLBPri
8,1 0.03 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 ∗ 0.01 ∗ 0.01 ∗ ∗ ∗

HR-DLBPri
8,1 0.04 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 ∗ 0.01 ∗ 0.01 ∗ 0.01 ∗

HV-DLBPri
8,1 0.03 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 ∗ 0.01 ∗ 0.01 ∗ ∗ ∗

DF-DLBPri
8,1 0.14 0.01 0.05 0.02 0.10 0.01 0.02 0.01 0.06 0.01 0.03 0.01 0.04 0.01 0.02 0.01

LTPri
8,1 0.06 0.01 0.02 0.01 0.04 0.02 0.02 0.01 0.01 ∗ ∗ ∗ 0.01 ∗ ∗ ∗

LTPriu2
8,1 0.03 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 ∗ 0.01 ∗ 0.01 ∗ ∗ ∗

LBPri
16,2 2.03 0.27 0.47 0.26 1.00 0.38 0.21 0.21 0.45 0.03 0.06 0.02 0.22 0.05 0.04 0.03

LBPriu2
16,2 0.04 0.01 0.02 0.01 0.02 0.02 0.01 0.01 0.01 ∗ ∗ ∗ 0.01 ∗ ∗ ∗

DLBPri
16,2 0.79 0.07 0.24 0.13 0.50 0.11 0.25 0.13 0.63 0.07 0.15 0.08 0.38 0.11 0.15 0.07

L-DLBPri
16,2 0.25 0.02 0.07 0.04 0.17 0.03 0.07 0.03 0.14 0.01 0.03 0.01 0.09 0.02 0.03 0.02

HR-DLBPri
16,2 0.79 0.07 0.26 0.14 0.51 0.12 0.26 0.13 0.68 0.07 0.16 0.08 0.38 0.12 0.15 0.07

HV-DLBPri
16,2 0.34 0.04 0.09 0.05 0.23 0.06 0.09 0.08 0.17 0.02 0.04 0.02 0.11 0.03 0.04 0.02

DF-DLBPri
16,2 0.73 0.12 0.24 0.13 0.48 0.18 0.14 0.13 0.60 0.06 0.14 0.07 0.36 0.10 0.14 0.07

LTPri
16,2 4.20 0.45 0.89 0.42 2.02 0.69 0.34 0.38 0.93 0.05 0.13 0.05 0.43 0.10 0.09 0.04

LTPriu2
16,2 0.04 0.01 0.02 0.01 0.03 0.02 0.01 0.01 0.01 ∗ 0.01 ∗ 0.01 0.01 ∗ ∗

NOTE: Values lower than 0.01 s have been indicated with symbol ‘∗’
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With respect to the relation between accuracy and compression

atio it is first of all important to notice that the number of retained

eatures depends a great deal on the dataset: more complex textures

re likely to require a higher number of features for a correct de-

cription. The results in fact show that the highest compression ra-

io was obtained with dataset six, which is composed of artificial

extures mainly made up by simple geometric primitives. Tables 3–

also suggest there is a direct trade-off – more noticeable with the

16, 2) configuration – between performance and compression: HV-

LBP provided the best performance yet the worst compression; the

everse occurred with LBPriu2. The user interested in high accuracy

ith fairly good compression (at least much better compression than

BPri) would choose HV-DLBP, whereas LBPriu2 would be a good can-

idate for the best compression.

.3. Computing time

In Section 4 we have shown that the time complexity of the

eature reduction schemes based on training can be, in the vari-
us cases, either O(MNlogN) or O(max[MN, NlogN]). On the other

and, the time complexity of the nearest neighbour, nearest mean

nd naïve Bayes classifier, can be estimated (assuming linear scan)

s O(NM), O(NC) and O(NC), respectively; whereas that of SVM is(
max[M, N] × min[M, N]

2
)

time [4]. As a result, the whole process

feature selection + classification) is in principle dominated by the

eature selection step when classification is based on any of the near-

st neighbour, nearest mean and naïve Bayes classifier; and by the

lassification step when SVM is used. Consequently, there is in the-

ry no advantage in performing feature selection with the former

roup of classifiers, since feature selection is computationally more

emanding than classification itself; by contrast, feature selection

an beneficial with SVM. In practice things can be slightly different

ue to diverse implementations and the presence of overhead. In the

ase of the naïve Bayes classifier, for instance, the multinomial imple-

entation chosen in our experiments can increase the computational

ost of the method.

The results show that the original LBP in the (8, 1) configuration

s approximately as fast as the reduced-dimension versions with all
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the classifiers tested (see Tables 6 and 7). In the (16, 2) configuration

no clear trend emerges with the 1-NN classifier, there is however a

significant reduction in the computing time when classification is

performed through SVM. In this case the reduced-dimension version

can be ten times faster than the original LBP.

7. Conclusions

In this paper we investigated the problem of determining sets of

discriminative patterns from local binary patterns. The strategies to

obtain dominant patterns can be divided in two groups: those that

keep knowledge of the patterns labels (labelled methods) and those

that discard such knowledge (unlabelled methods). It was the aim of

this paper to answer a very specific question: which is the best op-

tion? The result of our study is clear-cut: in none of the datasets con-

sidered in the experiments did the unlabelled strategy outperform

the labelled approach. It seems therefore that neglecting information

about the patterns labels has negative effects on the discrimination

capability of the method. The reader who is interested in utilising

dominant local binary patterns can clearly see that keeping data la-

bels can improve performance. Moreover, and differently from what

other authors suggested [17], we found that dominant local binary

patterns – no matter which strategy we adopt to determine them –

were in most cases less accurate than the original LBP, though the

difference was slight in some cases.

We also investigated the potential advantages that dominant lo-

cal binary patterns can provide in terms of compression ratio and

reduction of computing time. The dimensionality reduction can be

conspicuous, as shown in Table 5. In our experiments the number of

features to retain was determined indirectly by assigning the thresh-

old value of a given parameter, such as, depending on the method, the

percentage of the variance (HV-DLBP), of the average rank (HR-DLBP)

or of the population (DLBP and L-DLBP) accounted for by the selected

patterns. As suggested by other authors [17] we set this threshold at

0.8, a seemingly reasonable value also supported by empirical laws

such as the 80/20 rule [19]. The effect that changing this parameter

may have on accuracy and compression ratio is interesting subject for

future studies.

Regarding computing time, the main result is that the overall gain

(or loss) depends on the classification strategy. The use of dominant

patterns theoretically provides no advantage when classification is

based on computationally cheap classifiers, such as nearest neigh-

bour, nearest mean and naïve Bayes: asymptotically the original LBP

should perform, at least in principle, faster, in these cases. The ex-

perimental results clearly confirmed this assumption for the nearest

neighbour and nearest mean classifiers, whereas showed that some

increase in speed can be obtained with the naïve Bayes, most prob-

ably because reducing the number of features in this case also re-

duces the overhead related to building the multinomial distribution

(cf. Section 6.3). By contrast, just the reverse occurs with SVM: here,

due to the intrinsically higher complexity of the classifier, the overall

computing time benefits from a reduction of the space dimension.

In summary, the ‘take-home’ message of this study is that the use

of dominant binary patterns requires particular care. With respect to

accuracy our results indicate that keeping track of the patterns la-

bels improves the discrimination capability of DLBP. Moreover, in our

experiments the baseline descriptors (i.e.: LBPri
8,1 and LBPri

16,2) out-

performed their reduced-dimension counterparts in most cases. As

regards to speed, we have pointed out that using dominant binary

patterns is not necessarily advantageous, because the process of se-

lecting the dominant patterns has itself a computational cost, which

may not be paid back in the classification stage. A natural question

therefore arises whether and when searching for dominant patterns

makes sense altogether. The answer depends a great deal on the spe-

cific application. With some datasets (e.g. datasets two and three)

the use of simple classifiers such as 1-NN and NMC plus the base-
ine descriptors proved faster and at least as good as the other meth-

ds: in such situations we could see little reason for using domi-

ant patterns. By contrast, when more complex and computationally-

emanding methods (such as SVM) turn out to be more accurate

as it happens, for instance, with dataset seven), the reduction in

imensionality can significantly reduce the whole processing time:

n similar cases the use of dominant binary patterns can be a viable

pproach.

Calibration against local ternary patterns (LTP) showed in general

better performance of this method versus LBP, as one would expect.

n interesting subject for future studies would be the extension of

he experiments to a larger set of methods of the class Histograms of

quivalent Patterns [9], LTP included.
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