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This paper investigates the problem of learning sets of discriminative patterns from local binary patterns
(LBP). Such patterns are usually referred to as ‘dominant local binary patterns’ (DLBP). The strategies to ob-
tain the dominant patterns may either keep knowledge of the patterns labels or discard it. It is the aim of
this work to determine which is the best option. To this end the paper studies the effectiveness of differ-
ent strategies in terms of accuracy, data compression ratio and time complexity. The results show that DLBP
provides a significant compression rate with only a slight accuracy decrease with respect to LBP, and that
retaining information about the patterns’ labels improves the discrimination capability of DLBP. Theoretical
analysis of time complexity revealed that the gain/loss provided by DLBP vs. LBP depends on the classifica-
tion strategy: we show that, asymptotically, there is in principle no advantage when classification is based
on computationally-cheap methods (such as nearest neighbour and nearest mean classifiers), because in this
case determining the dominant patterns is computationally more expensive than classifying using the whole
feature vector; by contrast, pattern selection can be beneficial with more complex classifiers such as support
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1. Introduction

LBP is a very popular approach to texture analysis with appli-
cations in a wide range of areas such as, among others, surface in-
spection, face recognition, biometrics and medical image analysis [2].
The method is much appreciated for its many desirable properties,
such as ease of implementation, invariance to illumination changes,
limited computational demand and high descriptive performance -
especially when the level of noise is low [14]. LBP considers, as im-
age features, the occurrence probability of the binary patterns that
can be generated from an image patch of predefined shape and size
when thresholded at the value of the central pixel. It is well known
that the resulting probability distribution tends to be highly un-
even: some patterns tend to occur much more frequently than oth-
ers [24]. Many researchers have been concerned with the problem
of reducing the dimensionality of LBP by determining the subsets
of patterns that convey the largest amount of information. A com-
mon approach consists of reducing the number of features by using
some a priori rules [20]: Ojala et al. for instance proposed to cluster
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patterns into rotationally-equivalent classes, an approach which gen-
erates the well-known family of rotation invariant descriptors (LBP™).
They also suggested that further reduction could be obtained by con-
sidering the so called ‘uniform patterns’ (LBP"2), namely those pat-
terns that have at most two bitwise transitions [24]. Experiments
have shown that uniform patterns are the most common in natural
images [24], a finding which was later on explained on a theoretical
basis [1].

As an alternative, Liao et al. [17] and, more recently, Nanni et al.
[22] and Guo et al. [12], proposed a posteriori strategies in which the
patterns to retain are learnt from some training data. Liao et al. [17]
for instance suggested to retain, as features, the probability of occur-
rence of the smallest set of patterns that, in any given image, repre-
sent a certain percent — 80% in their implementation - of the total
population. The resulting dominant local binary patterns (DLBP) bear
no information about the patterns’ labels [17]; instead, they consider
the relative patterns’ frequency only. As a consequence this scheme
does not guarantee that the ith element of the feature vector ex-
tracted from an image I; and the ith element of the feature vector
extracted from an image I, refer to the same pattern. For this reason
we refer to such selection strategy as an unlabelled model. A natu-
ral question arises whether comparing the probability of occurrence
of different patterns makes sense altogether [6]. In [17] the authors
affirm that omitting the pattern type information is not harmful; in
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this paper we endorse a diametric opposite view: that neglecting
information about the patterns type has negative effects on the dis-
crimination capability of the method. Our main claim is that feature
selection schemes that keep knowledge of the patterns’ type outper-
form the unlabelled approach. We refer to such reduction schemes as
labelled methods.

In the remainder of the paper, after recalling the basics of LBP
in Section 2, we discuss the unlabelled (Section 3) and labelled
(Section 4) approach for determining dominant local binary patterns
and perform an experimental comparison in Section 5. The results
presented in Section 6 show that in no case the unlabelled model is
superior to the labelled counterparts. We also evaluate the compres-
sion ratio that can be obtained with the various methods and study
the effect of the different feature reduction schemes on the overall
computing time. Section 7 concludes the paper with some final con-
siderations.

2. Brief overview of LBP

The LBP operator characterizes images through the probability
of occurrence of certain binary patterns that a neighbourhood of
predefined shape and size can generate [24]. The typical configura-
tion consists of a central pixel plus a set of peripheral points evenly
spaced along a circle (see Fig. 1) — but other arrangements have been
proposed as well [21]. The intensity values of those points that do
not coincide with image pixels are estimated through interpolation.
Such neighbourhoods are conventionally indicated in the form (m, R),
where m represents the number of peripheral points and R the radius
of the circle.

For each position of the neighbourhood a corresponding binary
pattern is obtained by thresholding the intensity values of the pe-
ripheral points at the value of the central pixel. Each binary patterns
is then assigned a unique label in the following way:

m—1
LBPyg =Y 2%€(li—1I) (1)
i=0
where £ is the binary thresholding function (Eq. 2).
1, ifx>0
X) = - 2
§) {0, ifx<0 )

As aresult, the LBP,; g operator produces 2™ different binary pat-
terns. Theoretically, when the input image rotates by angular steps
of £25r /m radians, the binary sequence {§ (I; — Ic)}, i€ {1, ..., m—1}
circularly shifts by one position to the left or to the right. To make
the descriptor invariant against rotation, one can consider equivalent
all the patterns that can be transformed into one another by a rota-
tion of multiples of +27 /m radians. This approach gives rise to the
rotation invariant operator, usually referred to as LBP}; . The num-
ber of rotationally-equivalent classes for a given m can be determined
through group theory, as detailed in Ref. [8]. Table 1 shows the num-
ber of features generated by the LBP,, g and LBP};  operators for dif-

OO
WO
@

Q®0

Fig. 1. Circular neighbourhood.

Table 1
Number of local binary patterns.
m N
LBP,,x LBP
4 16 6
8 256 36
16 65,536 4116
24 16,777,216 699,252

ferent values of m. Clearly the dimension of the descriptors grows
quickly as m increases.

High dimensional data are in general difficult to handle due to the
‘curse of dimensionality’ [7]. Moreover, both experimental and the-
oretical studies have suggested that the probability of occurrence of
local binary patterns may vary greatly from one pattern to another,
and that certain patterns very seldom occur in practice [1,24]. As
a result, some of them are likely to produce only noisy and irrele-
vant features that may mislead the classification [12]. The problem
of determining the set of ‘most discriminative’ patterns is therefore a
very actual and interesting one both from a theoretical and practical
standopint.

3. Dominant local binary patterns: the unlabelled model (DLBP)

As we mentioned in Section 1, the unlabelled approach discards
any information about the patterns’ labels. The method consists of
sorting the LBP histogram of each image in descending order and re-
taining a certain number of bins. Given a set of train images, the num-
ber of bins to retain is computed by determining, for each train im-
age, the cardinality of the smallest set of patterns that accounts for
a given fraction of the total occurrence probability and by averaging
this value over the whole train set. Each histogram is sorted indepen-
dently of the others in this scheme, therefore any information about
the patterns’ type is lost: the resulting DLBP features will only contain
information about the patterns’ frequencies. This strategy is based on
the assumption that it is the relative probability distribution what re-
ally matters, not the occurrence probability of each specific pattern
[17]. As for the fraction of the total occurrence to retain, throughout
the paper we maintain the settings proposed in the above-cited refer-
ence, where the authors recommend the value 0.8. From a computa-
tional standpoint, the algorithm is dominated by the ordering of each
vector of the train set, therefore executes in O(MNlogN) time, where
M is the number of train patterns and N the dimension of the original
descriptor.

4. Dominant local binary patterns: the labelled model

As opposed to the unlabelled model, the labelled model keeps
knowledge of the patterns’ labels. Different implementations of this
approach have been proposed in the literature: we briefly recall them
in the following subsections.

4.1. Labelled dominant local binary patterns (L-DLBP)

Labelled dominant local binary patterns have been described by
Fu et al. [10] and, more recently, by Gonzalez et al. [11]. In this scheme
the original LBP histograms of the train images are first averaged
column-wise (feature-by-feature) and the resulting vector (average
patterns’ frequencies) is sorted in descending order. Then the labels of
the smallest set of co-occurrences that sum at least 0.8 are retained;
the others are discarded. The labels this way obtained constitute the
set of dominant patterns; the feature vector of any image is repre-
sented by the probabilities of occurrence of these patterns. From a
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computational standpoint the approach involves computing the av-
erage of each feature over the train set and sorting the result, which
gives a time complexity of O(max[MN, NlogN]).

4.2. Highest-variance dominant local binary patterns (HV-DLBP)

Highest-variance dominant local binary patterns, introduced by
Nanni et al. [22], retain the local binary patterns with the highest
variance. The first step of this procedure therefore consists of com-
puting the column-wise (feature-by-feature) variance of the pattern
histograms of the train images; the resulting vector is then sorted in
descending order. The dominant patterns are represented by the la-
bels of the smallest set of patterns that accounts for at least 0.8 of the
total variance. The computational complexity is the same as L-DLBP.

4.3. Highest-rank dominant local binary patterns (HR-DLBP)

Highest-rank dominant local binary patterns, recently proposed
by Doshi and Schaefer [6], select the dominant patterns through a
preliminary rank transform of the pattern histograms. In the first step
each pattern histogram of the train images is sorted and ranked: the
most frequent pattern in each image is assigned the highest rank; the
least frequent is assigned rank one. The ranks are averaged and the re-
sulting vector (average rank) is sorted in descending order. The num-
ber of patterns to retain is the cardinality of the minimum set that
accounts for at least 0.8 of the sum of the average rank. The method
requires sorting each train patterns and averaging the resulting ranks,
therefore executes in O(MNlogN) time.

4.4. Discriminative features (DF-DLBP)

Guo et al. [12] discriminative features represent a more involved
learning framework for determining dominant patterns. This three-
layer approach works as follows. The first step (referred to as ‘layer 1’
in Ref. [12]) involves sorting each pattern histogram of the train set
and retaining the smallest set of labels that account for a given frac-
tion (0.8 in this case) of the total probability. This operation that can
be carried out in O(MNlogN) time. The second step (‘layer 2’) consists
of intersecting, for each class, the sets of labels returned by each train
pattern belonging to that class. Layer 2 gives, as a result, the dominant
pattern set of each class. Assuming that the train patterns are equally
distributed among the classes, so that there are M/C train patterns
per class, we perform this operation in O(2N(M — C)) time, where C
is the number of classes. In the third step (‘layer 3’) the dominant pat-
terns set is obtained as the union of dominant patterns of each class.
The complexity of this operation is O(2N(C — 1)) in the worst case.
Asymptotically, the execution is dominated by layer 1, therefore the
time complexity of the whole method is O(MNIlogN).

Differently from the other methods, this approach guarantees that
any class in the training set is adequately represented within the se-
lected patterns. A potential disadvantage could be the high number
of features that the method produces, which in principle gets higher
when the number of classes grows.

5. Experiments

We conducted a supervised image classification experiment to
evaluate the effectiveness of the different strategies for obtaining
dominant local binary patterns presented in Sections 3 and 4. The
overall objective was to determine the effect of including/omitting
information about the patterns’ labels on the classification accuracy.
We also investigate the compression ratio that can be achieved with
the various strategies, as well as the average computing time of the
different methods. As a baseline for comparison, we considered the
original, full-dimensional, LBPg“'_1 and LBP%.2 descriptors [24]. For cal-
ibration purposes we also included the results obtained with the
LTPg42 and LTP}3 operators [27]. In all the experiments the thresh-
old value for LTP was set to T = 3 as suggested in Ref. [23].

5.1. Datasets

We considered eight datasets containing different types of texture
images. Dataset one contains a selection of 80 texture images from
the ALOT database [3]. Dataset two contains 13 texture classes from
Brodatz (hardware-rotated digital images have been captured in our
laboratory directly from the original book.) Dataset three includes all
the 25 classes of the Kylberg-Sintorn rotation database. Dataset four
is the whole Mondial Marmi database (v 1.1), which comprises 12
classes of granite textures. Dataset five covers a selection of 45 tex-
ture classes from Outex. Dataset six is composed of a set of texture
images obtained from vectorial pictures: in this case the vectorial im-
ages were first rotated, then raster-scanned to get the rotated texture
images. A detailed description of datasets from one to six is also avail-
able in [11]. Dataset seven is a two-class database containing a subset
of images from the Pap-smear benchmark [13,23]: to have an equal
number of the two classes (i.e.: normal vs. abnormal) we selected 68
image samples from each of the three normal classes (i.e.: superficial
squamous epithelial, intermediate squamous epithelial and colum-
nar epithelial) and 51 from each of four the abnormal classes (i.e.:
light dysplastic, moderately dysplastic, severely dysplastic and carci-
noma in situ). Finally, dataset eight is made up of a selection of images
from the 2D HeLa database [25]. In this case for each of the 10 classes
of the database - which represent sub-cellular organelles such as nu-
clei, endoplasmic reticulum, giantin, cis/medial Golgi, cis Golgi, lyso-
somes, mitochondria, nucleoli, actin, endosomes, and tubulin - we
obtained 20 images samples for each class by manually selecting rep-
resentative textured regions from as many images of the correspond-
ing organelles. Summary data and sample images of each dataset are
reported in Table 2.

5.2. Classification and accuracy estimation

We employed four different classification strategies: (1) nearest-
neighbour (1-NN) rule with L, distance; (2) nearest mean classifier
(NMC) with L, distance; (3) naive Bayes (NB) classifier with multino-
mial distribution and (4) support vector machine (SVM) with radial
basis kernel. Based on theoretical considerations on the spread of the
input data (see Ref. [5]), we used a fixed value of 2,/(m — 1)/m for
SVM parameter C, where m is the number of features, and estimated
y trough 10-fold validation from the training data over the discrete
set of values {279, 27, ..., 29}.

Accuracy estimation was based on 100-fold split-half validation
with stratified sampling. For each subdivision into train and test set
the classifier was trained with the images of the 0°-group and tested
with the images of each of the 9°-group (including the 0°-group), be-
ing 0 one of the rotation angles available in each dataset (see Table
2). The accuracy for each rotation angle was the percentage of test
images correctly classified. These values were averaged over the ro-
tation angles of each dataset to give a global accuracy measure. The
resulting figures are reported in Tables 3 and 4.

5.3. Implementation, execution and reproducible research

All the algorithms discussed in this work have been implemented
in MaTLAB® and executed on a laptop PC with 8 Gb RAM powered
by INTEL® core™i5 and WinDows " 7 Professional. Extraction of LBP
features was based on the routines provided by the Center for Ma-
chine Vision Research at the University of Oulu, Oulu, Finland [15].
The classification routines were based on PRTools v5 [26] and lib-
svm [ 18] for the 1-NN and SVM classifiers, respectively; on MATLAB®’s
built-in functions for the naive Bayes and NMC. For reproducible re-
search purposes, all the data required to replicate the experiments
(i.e.: source code, images and subdivisions into train and validation
sets) are available online (Ref. [16]).

! To access the page: user = dominant, password = patterns



E. Bianconi et al./ Pattern Recognition Letters 65 (2015) 8-14 1

Table 2
Image datasets used in the experiments: summary table.
No.  Source Rotation No. of Samples/  Image Sample images
angles classes  class resolution

1 ALOT 0°, 60°, 120°, 180° 80 16 181 x 181
2 Brodatz 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90° 13 16 205 x 205
3 Kylberg-Sintorn  0°, 40°, 80°, 120°, 160°, 200°, 240°, 280°, 320° 25 16 512 x 512
4 Mondial-Marmi ~ 0°, 5°, 10°, 15°, 30°, 45°, 60°, 75°, 90° 12 16 272 x 272
5 Outex 0°, 5°, 10°, 15°, 30°, 45°, 60°, 75°, 90° 45 20 128 x 128
6 Vectorial 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90° 20 16 225 x 225
7 Pap smear 0° 2 204 Variable

8 2D Hela 0° 10 20
Table 3
Classification results (1-NN and SVM classifier).
Classifier 1-NN (L) SVM
Dataset 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Baseline
LBP{;"J 70.6 834 89.9 82.5 74.4 70.5 75.5 60.1 69.6 83.6 89.3 76.5 775 66.2 82.4 63.6
Unlabelled methods
DLBP{;’:1 58.1 819 834 80.9 67.5 55.7 72.7 50.7 549 819 814 74.6 69.7 534 777 53.1
Labelled methods
LBPg “2 70.0 84.6 89.5 824 74.4 719 75.2 59.1 69.0 84.5 889 76.4 774 703 819 62.1
L- DLBPg’] 66.4 82.8 89.0 815 72.7 54.8 73.2 60.0 64.9 82.8 88.1 75.5 75.6 52.7 81.6 63.7
HV- DLBPn 67.9 834 87.5 80.2 74.2 65.7 74.2 60.0 66.2 833 86.5 74.5 771 61.3 81.6 63.5
HR- LBP” 66.4 80.9 89.0 81.5 72.6 54.8 73.2 60.0 64.9 80.9 88.1 75.6 75.5 52.8 81.6 63.3
DF- DLBP” 69.4 81.7 89.5 815 74.2 61.4 65.0 60.0 68.1 81.7 88.8 75.6 771 59.2 75.2 63.2
LTPY, 724 918 915 861 765 778 812 620 740 912 912 852 775 787 842 651
LTPQ:‘QZ 72.8 92.0 91.5 86.1 774 79.1 81.8 61.0 743 91.3 90.9 85.2 78.5 80.2 85.0 63.4
Baseline
LBP?6 5 74.9 95.0 86.6 87.3 79.5 754 75.7 65.2 72.7 934 85.3 78.9 83.0 75.0 80.5 71.0
Unlabelled methods
DLBPT6 2 64.9 90.5 82.7 85.6 70.2 66.6 72.2 56.0 56.4 89.4 754 75.6 715 619 74.5 56.5
Labelled methods
LBP;%‘ZZ 73.5 95.0 859 854 78.4 68.1 741 64.0 71.2 93.2 84.2 773 813 69.7 79.6 679
L- DLBPQ’6 5 74.4 950 86.5 86.9 79.1 69.4 75.5 66.5 71.9 934 85.0 78.6 82.5 66.5 80.5 70.5
HV- DLBP]’6 5 74.8 95.0 86.5 872 79.5 74.8 75.6 65.1 72.5 934 85.2 78.8 829 73.6 80.6 70.8
HR—DLBPTM 743 95.0 86.5 86.9 79.1 69.4 75.5 66.4 718 934 85.0 78.5 82.5 66.5 80.5 70.6
DF-DLBP?’“ 74.8 95.0 86.6 86.9 79.4 73.4 71.7 66.6 72.4 934 85.2 78.6 82.8 71.7 76.6 70.4
LTP?G 5 82.0 973 94.7 939 86.5 80.8 80.5 65.5 83.7 96.6 94.8 92.5 88.5 814 82.9 711
LTPrmz 81.0 975 93.1 924 86.3 834 821 64.3 82.0 96.5 91.9 92.3 88.1 82.7 84.6 68.3
6. Results 6.1. Classification accuracy
In this section we summarise and discuss the results of the exper- The average accuracy values for each datasets are reported in

iments with respect to classification accuracy, compression ratio and Tables 3 and 4. In boldface we have highlighted the best re-
computing time. sult achieved with dominant local binary patterns. The results
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Table 4
Classification results (naive Bayes and NMC classifier).
Classifier Naive Bayes NMC (L)
Dataset 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Baseline
LBPY | 67.0 817 872 804 742 759 682 517 57.6 773 816 76.1 70.7 598 577 507
Unlabelled methods
DLBPY 498 755 790 782 642 454 567 384 468 755 733 752 629 524 542 447
Labelled methods
LBPyu2 605 824 849 777 720 727 587 503 564 779 810 759 698 601 571 49.8
L-DLBPy | 592 758 872 786 705 439 592 509 553 766 802 759 691 520 570 50.6
HV-DLBPY | 595 797 844 771 735 566 583 509 556 773 792 749 705 578 56.7  50.6
HR—DLBPg’i1 592 770 872 786 692 439 592 509 553 751 802 759 691 520 570 50.6
DF—DLBP;{1 610 740 872 786 735 550 580 508 568 760 813 759 705 570 543  50.6
LTP;{1 67.1 844 884 815 61.1 802 700 528 577 795 863 811 532 634 626 527
LTP2 654 853 880 806 600 796 689 514 58.1 797 869 809 537 645 636 512
Baseline
LBPYL , 726 938 867 848 808 840 73.1 56.4 585 910 79.5 79.5 78.1 615 683 564
Unlabelled methods
DLBPT , 552 907 768 793 711 54.1 64.7 488 485 892 719 779 68.7 555 648 478
Labelled methods
LBP}t2 60.7 919 80.1 792 785 740 672 58.3 544 902 750 746 732 612 635 529
L—DLBPQ"&2 678 928 817 825 813 59.6 715 615 58.1 911 793 792 777 593 683 563
HV-DLBP}; , 717 922 845 860 837 754 728 620 584 910 794 794 780 612 683 564
HR—DLBPT'&2 663 928 813 822 812 596 716 61.1 58.0 911 793 792 777 593 683 563
DF-DLBP; , 713 926 849 831 83.6 715 694  60.0 584 910 794 793 779 60.6 674 56.2
LTPTE 805 944 937 919 803 846 818 55.2 69.6 913 92.1 894 686 681 69.1 57.7
LTP;2 76.0 942 920 883 787 847 808 587 669 911 89.0 848 721 720 800 527

Table 5

Compression ratio.

Dataset
1 2 3 4 5 6 7 8

LBPg{“f 4:1 4:1 4:1 41 4:1 4:1 4:1 41

DLBPQ1 5:1 71 5:1 41 5:1 18:1 5:1 4:1

L-DLBPY 5:1 71 5:1 4:1 5:1 18:1 5:1 4:1

HR-DLBP;,  5:1 71 5:1 4:1 5:1 18:1 5:1 4:1

HV-DLBPY,  4:1 5:1 4:1 41 4:1 9:1 4:1 41

DF-DLBP | 4:1 71 4:1 4:1 4:1 12:1 71 4:1

LBP{%‘{ZZ 229:1 229:1 229:1 229:1 229:1 229:1 229:1 229:1

DLBPY , 96:1 274:1 100:1 56:1 66:1 1029:1  58:1 33:1

L-DLBPY , 96:1 274:1 100:1  56:1 66:1 1029:1  53:1 29:1

HR-DLBPT , 96:1 274:1 100:1  56:1 66:1 1029:1  53:1 29:1

HV-DLBPY,,  25:1 96:1 45:1 22:1 20:1 317:1 12:1 5:1

DF-DLBP" 29:1 137:1 40:1 57:1 30:1 343:1 294:1 51:1

16,2

clearly show that in no case DLPB emerged out as the best
option for determining the dominant patterns: the labelled ap-
proach always performed better than the unlabelled one. Note-
worthily, the decrease in accuracy that one may come into when
using unlabelled dominant patterns can be rather conspicuous,
and in more than one case even in excess of 10 percentage
points. We also observe that dominant local binary patterns -
no matter the strategy adopted to determine them - in gen-
eral performed worse than the original LBP, though in most cases
the difference was very slight. In the (8, 1) configuration it is
worth mentioning the very good performance of LBP"2 which
provided the best results in most of the datasets and in some
cases it was even better than the original LBP. In the (16, 2)
configuration, however, the accuracy of uniform patterns declined
and it was surpassed by the other methods, among which HV-
DLBP stands out as the best in the majority of the classification
problems.

6.2. Compression ratio

Table 5 reports the compression ratio (rounded to the nearest in-
teger) achieved by each feature reduction scheme in each dataset.
This is the proportion between the number of patterns at the baseline
(those produced by LB g"_l and LBPY% ,) and the number of dominant
patterns generated by the various methods. For each dataset the high-
est values are indicated in boldface. The values are in general quite
high, ranging from 4:1 to 18:1 in the (8, 1) configuration and from
20:1 to 1029:1 in the (16, 2) configuration. Note that the compression
ratio provided by the ‘riu2’ model is established a priori, hence is the
same for all datasets. On average we can see that DF-DLBP and HV-
DLBP provided lower compression ratios than the other methods. As
for the former, the outcome is in perfect agreement with the theoret-
ical considerations reported in Section 4.4; as for the latter, the result
suggests that the variance of the patterns’ frequency is distributed
more evenly among the patterns than the frequency.
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Table 6
Average computing time (feature selection + classification, seconds per problem; 1-NN and SVM classifier).
Classifier 1-NN (L) SVM
Dataset 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
LBPQ_1 053 0.08 012 0.08 028 0.1 009 010 27.21 0.68 2.45 0.58 8.93 1.64 0.38 0.50
LBPQ}{Z 053 0.08 012 008 028 0.11 0.07 0.10 27.42 0.64 2.03 0.49 6.89 1.30 0.28 0.41
DLBPQ‘1 052 0.08 012 008 028 0.11 0.07 0.10 22.48 0.61 2.45 0.62 8.31 171 0.27 0.38
L-DLBPY | 052 009 012 008 028 010 0.07 0.10 25.29 0.60 2.32 0.54 7.24 1.90 0.27 0.38
HR-DLBPY | 054 0.08 012 008 028 0.11 0.07 0.10 24.71 0.60 2.35 0.55 7.74 1.63 0.27 0.37
HV-DLBP} 053 014 012 007 028 010 0.07 0.10 25.21 0.59 2.32 0.57 722 1.95 0.28 0.38
DF—DLBPQ] 0.61 0.11 0.15 009 035 011 0.11 0.13 25.53 0.57 2.31 0.56 7.26 172 0.27 043
LTPg"J 0.73  0.10 0.17 0.10 038 014 0.07  0.09 11053  2.82 1068 234 35.10 6.70 0.81 1.78
LTPg'}‘l2 072 011 0.18 0.11 039 015 0.08 0.10 110.61 2.74 1070 243 33,51 5.83 0.52 1.52
LBPTL 1.04 014 024 013 0.60 0.19 020 0.15 272.11 5.01 29.61 6.85 10744  8.39 21.55 8.01
LBPjt2 053 008 012 007 027 010 0.07 0.0 23.75 0.61 2.28 0.55 7.50 1.55 0.31 0.42
DLBPY , 1.16 0.18 033 019 070 027 029 022 25.61 0.64 227 0.75 9.24 177 0.63 0.88
L-DLBPY; , 0.75 0.10 0.16 009 039 014 0.11 0.13 27.10 0.65 2.40 0.67 9.26 1.57 0.52 0.94
HR-DLBPT 1.24 0.18 032 019 070 027 028 0.20 29.49 0.70 2.59 0.75 9.80 175 0.63 1.01
HV-DLBP};, 063  0.11 0.17 0.10 042 015 0.13 0.14 34.57 0.70 2.59 0.82 14.47 1.62 1.63 3.25
DF—DLBP?&2 111 0.18 030 018 067 026 027 021 34.44 0.70 2.93 0.72 11.45 1.74 043 0.75
LTPY , 1.57 020 035 020 092 032 031 0.19 514.91 11.04  65.81 15.67 19890 2144 36.09 15.40
LTPQ"G”?Z 073 011 0.18 0.10 038 015 0.07  0.09 2778 0.68 2.60 0.72 10.19 1.53 0.55 0.48
Table 7
Average computing time (feature selection + classification, seconds per problem; naive Bayes and NMC classifier).
Classifier Naive Bayes NMC
Dataset 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8
LBPQ’)1 005 0.02 0.02 0.01 003 002 0.01 o0.01 0.01 * * * 0.01 * * *
LBPgu2 0.03 0.01 0.02 0.01 002 0.01 0.01 o0.01 0.01 * 0.01 * 0.01 * * *
DLBPF | 0.03 0.01 0.01 0.01 0.02 001 o0.01 o0.01 0.01 * 0.01 * 0.01 * * 0.01
L—DLBPQ_ . 0.03 0.01 0.01 0.01 0.02  0.01 001 0.01 0.01 * 0.01 * 0.01 * * *
HR—DLBPQ1 0.04 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 * 0.01 * 0.01 * 0.01 *
HV—DLBPQ‘1 0.03 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 * 0.01 * 0.01 * * *
DF-DLBP 0.14 0.01 0.05 0.02 0.10 0.01 0.02 0.01 0.06 0.01 0.03 0.1 0.04 0.01 0.02 0.01
LTPy | 0.06 0.01 0.02 0.01 004 002 0.02 o0.01 0.01 * * * 0.01 * * *
LTpyu2 0.03 0.01 0.01 0.01 002 0.01 0.01 o0.01 0.01 * 0.01 =« 0.01 * * *
LBPIE 203 027 047 026 100 038 0.21 0.21 045 0.03 0.06 0.02 022 005 004 0.03
LBP;%‘{ZZ 004 0.01 0.02 001 002 0.02 0.01 0.01 0.01 * * * 0.01 * * *
DLBPY , 079 007 024 013 050 0.11 025 013 063 007 015 008 038 011 0.15 0.07
L—DLBP?’GV2 025 0.02 0.07 004 017 003 007 003 0.14 0.01 0.03  0.01 009 002 003 002
HR-DLBP} , 079 007 026 014 0.51 0.12 026 013 068 007 0.16 008 038 012 0.15 0.07
HV-DLBP},, 034 004 009 005 023 006 009 008 0.17 0.02 0.04 0.02 o011 0.03 0.04 0.02
DF-DLBPY , 0.73 0.12 024 013 048 0.8 0.14 0.13 060 006 0.14 007 036 010 0.14 0.07
LTPQ"GV2 420 045 089 042 202 069 034 038 093 005 013 005 043 010 0.09 0.04
LTPq%fzz 004 0.01 0.02 0.01 003 002 0.01 o0.01 0.01 * 0.01 * 001 001 * *

NOTE: Values lower than 0.01 s have been indicated with symbol ‘'

With respect to the relation between accuracy and compression
ratio it is first of all important to notice that the number of retained
features depends a great deal on the dataset: more complex textures
are likely to require a higher number of features for a correct de-
scription. The results in fact show that the highest compression ra-
tio was obtained with dataset six, which is composed of artificial
textures mainly made up by simple geometric primitives. Tables 3-
5 also suggest there is a direct trade-off — more noticeable with the
(16, 2) configuration - between performance and compression: HV-
DLBP provided the best performance yet the worst compression; the
reverse occurred with LBP"2, The user interested in high accuracy
with fairly good compression (at least much better compression than
LBP") would choose HV-DLBP, whereas LBP'“2 would be a good can-
didate for the best compression.

6.3. Computing time

In Section 4 we have shown that the time complexity of the
feature reduction schemes based on training can be, in the vari-

ous cases, either O(MNIlogN) or O(max[MN, NlogN]). On the other
hand, the time complexity of the nearest neighbour, nearest mean
and naive Bayes classifier, can be estimated (assuming linear scan)
as O(NM), O(NC) and O(NC), respectively; whereas that of SVM is
O(max[M. N] x min[M, N}?) time [4]. As a result, the whole process
(feature selection + classification) is in principle dominated by the
feature selection step when classification is based on any of the near-
est neighbour, nearest mean and naive Bayes classifier; and by the
classification step when SVM is used. Consequently, there is in the-
ory no advantage in performing feature selection with the former
group of classifiers, since feature selection is computationally more
demanding than classification itself; by contrast, feature selection
can beneficial with SVM. In practice things can be slightly different
due to diverse implementations and the presence of overhead. In the
case of the naive Bayes classifier, for instance, the multinomial imple-
mentation chosen in our experiments can increase the computational
cost of the method.

The results show that the original LBP in the (8, 1) configuration
is approximately as fast as the reduced-dimension versions with all
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the classifiers tested (see Tables 6 and 7). In the (16, 2) configuration
no clear trend emerges with the 1-NN classifier, there is however a
significant reduction in the computing time when classification is
performed through SVM. In this case the reduced-dimension version
can be ten times faster than the original LBP.

7. Conclusions

In this paper we investigated the problem of determining sets of
discriminative patterns from local binary patterns. The strategies to
obtain dominant patterns can be divided in two groups: those that
keep knowledge of the patterns labels (labelled methods) and those
that discard such knowledge (unlabelled methods). It was the aim of
this paper to answer a very specific question: which is the best op-
tion? The result of our study is clear-cut: in none of the datasets con-
sidered in the experiments did the unlabelled strategy outperform
the labelled approach. It seems therefore that neglecting information
about the patterns labels has negative effects on the discrimination
capability of the method. The reader who is interested in utilising
dominant local binary patterns can clearly see that keeping data la-
bels can improve performance. Moreover, and differently from what
other authors suggested [17], we found that dominant local binary
patterns — no matter which strategy we adopt to determine them -
were in most cases less accurate than the original LBP, though the
difference was slight in some cases.

We also investigated the potential advantages that dominant lo-
cal binary patterns can provide in terms of compression ratio and
reduction of computing time. The dimensionality reduction can be
conspicuous, as shown in Table 5. In our experiments the number of
features to retain was determined indirectly by assigning the thresh-
old value of a given parameter, such as, depending on the method, the
percentage of the variance (HV-DLBP), of the average rank (HR-DLBP)
or of the population (DLBP and L-DLBP) accounted for by the selected
patterns. As suggested by other authors [17] we set this threshold at
0.8, a seemingly reasonable value also supported by empirical laws
such as the 80/20 rule [19]. The effect that changing this parameter
may have on accuracy and compression ratio is interesting subject for
future studies.

Regarding computing time, the main result is that the overall gain
(or loss) depends on the classification strategy. The use of dominant
patterns theoretically provides no advantage when classification is
based on computationally cheap classifiers, such as nearest neigh-
bour, nearest mean and naive Bayes: asymptotically the original LBP
should perform, at least in principle, faster, in these cases. The ex-
perimental results clearly confirmed this assumption for the nearest
neighbour and nearest mean classifiers, whereas showed that some
increase in speed can be obtained with the naive Bayes, most prob-
ably because reducing the number of features in this case also re-
duces the overhead related to building the multinomial distribution
(cf. Section 6.3). By contrast, just the reverse occurs with SVM: here,
due to the intrinsically higher complexity of the classifier, the overall
computing time benefits from a reduction of the space dimension.

In summary, the ‘take-home’ message of this study is that the use
of dominant binary patterns requires particular care. With respect to
accuracy our results indicate that keeping track of the patterns la-
bels improves the discrimination capability of DLBP. Moreover, in our
experiments the baseline descriptors (i.e.: LBP§ ; and LBPYj,) out-
performed their reduced-dimension counterparts in most cases. As
regards to speed, we have pointed out that using dominant binary
patterns is not necessarily advantageous, because the process of se-
lecting the dominant patterns has itself a computational cost, which
may not be paid back in the classification stage. A natural question
therefore arises whether and when searching for dominant patterns
makes sense altogether. The answer depends a great deal on the spe-
cific application. With some datasets (e.g. datasets two and three)
the use of simple classifiers such as 1-NN and NMC plus the base-

line descriptors proved faster and at least as good as the other meth-
ods: in such situations we could see little reason for using domi-
nant patterns. By contrast, when more complex and computationally-
demanding methods (such as SVM) turn out to be more accurate
(as it happens, for instance, with dataset seven), the reduction in
dimensionality can significantly reduce the whole processing time:
in similar cases the use of dominant binary patterns can be a viable
approach.

Calibration against local ternary patterns (LTP) showed in general
a better performance of this method versus LBP, as one would expect.
An interesting subject for future studies would be the extension of
the experiments to a larger set of methods of the class Histograms of
Equivalent Patterns [9], LTP included.
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